Numpy的API介绍

目录

矩阵的创建

第一种

第二种:自定义矩阵

第三种:特定矩阵

零矩阵

'1'矩阵

空矩阵

随机矩阵

rand

 randn

randint

uniform

特殊矩阵的创建

等比数组

等差数组

等比矩阵

等差矩阵

Numpy的属性

Numpy中数据运算

乘法

除法

向上取整

向下取整

四舍五入


矩阵的创建

第一种

arange(m,n):包左不包右,即:m到n-1的数(左边界默认0)

reshape(行数,列数)

import numpy as np            # 导包:下面代码默认导包
arr1 = np.arange(15).reshape(3,5)
print(arr1)

得到一个3行5列的二维数组(矩阵),如下:

[[0,1,2,3,4] 

[5,6,7,8,9]

[10,11,12,13,14]]

第二种:自定义矩阵

arr2 = array([[3,3,1],[4,5,2],[7,8,8]])
print(arr2)

打印出

[[3,3,1]

[4,5,2]

[7,8,8]]

第三种:特定矩阵

零矩阵

用法:np.zeros(15).reshape(3,5)

'1'矩阵

用法:np.ones(15).reshape(3,5)

空矩阵

用法:np.empty(15).reshape(3,5)

随机矩阵

 随机数的函数random

rand

arr3 = np.random.rand(3,5)              # [0,1)中的随机小数,rand(行数,列数)
print(arr3)

 randn

arr4 = np.random.randn(3,5)              # 正态分布的数,rand(行数,列数)
print(arr4)

randint

arr5 = np.random.randint(1,5, size=(3,5))   # 随机整数,[1,5)之间的整数
print(arr5)

uniform

arr6 = np.random.uniform(1,5, size=(3,5)) # 随机小数. [1,5)之间 rand(行数,列数)
print(arr6) 

特殊矩阵的创建

分为等比数列的矩阵和等差数列的矩阵

等比数组

arr7 = np.logspace(2,6,4,base=2,endpoint=False) # logspace(幂起始,幂结束,base底数,endpoint=True(包左包右),False(包左不包右)
print(arr7) 

等差数组

arr8 = np.linspace(2,6,6,endpoint=True)  # 等差数列,endpoint为True包右,False不包右
print(arr8)

当然也可以和reshape结合使用

等比矩阵

arr7_1 = np.logspace(2,6,4,base=2,endpoint=False).reshape(2,2)
print(arr7_1) 

等差矩阵

arr8_1 = np.linspace(2,6,6,endpoint=True).reshape(2,3)
print(arr8_1)

Numpy的属性

arr = np.random.randint(3,6,size=(3,5))
print(f'数组的轴(维度):{arr.ndim}')          # number of dimensions
print(f'数组的形状(几行几列):{arr.shape}')    # shape
print(f'数组的元素类型:{arr.dtype}')         # data type
print(f'数组中元素占的字节:{arr.itemsize}')  # item是数组中的元素
print(f'数组中元素的个数{arr.size}')         # 数组中元素的个数
print(f'数组的类型{type(arr)}')             # arr的数据类型

Numpy中数据运算

乘法

这里的乘法不是真正的矩阵相乘,而是(每个元素相乘)需要矩阵的行列数相同

直接用 * 或者 np.multiply(arr1,arr2)

除法

同上面的乘法,每个元素相除,同样要求矩阵的行列数相同.

用法:np.divide(arr1,arr2)

向上取整

将数字向上取整,例如: -0.4 取到 0 , 10.2 取到 11, 43.5 取到 44

用法:np.ceil(arr1)

向下取整

将数字向下取整,例如: - 42.3取到 -43 , 14.3 取到 14, 43.5 取到 44

用法:np.floor(arr1)

四舍五入

小数位小于 5 取0, 大于等于5 向上进一位.

用法:np.rint(arr1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值