xsi:noNamespaceSchemaLocation使用心得

在使用ehcache的时候碰到一个问题: 
Java代码   收藏代码
  1. is invalid; nested exception is org.xml.sax.SAXParseException: cvc-elt.1: Cannot find the declaration of element 'ehc  
  2. ache'  

Java代码   收藏代码
  1. Caused by: org.xml.sax.SAXParseException: cvc-elt.1: Cannot find the declaration of element 'ehcache'  


分析下来就是 ehcache.xml文件加载出问题了,根据错误可以看出是"ehcache"节点无法解析,那么首先就可以想到是描述文件出错ehcache.xsd; 
为什么加载不到呢在本地直接
Java代码   收藏代码
  1. curl -X GET http://ehcache.org/ehcache.xsd   

发现确实是链接不到服务器,发现是内网机器无法访问网络; 
定位到问题首先想到的就是,那把ehcache.xsd下载到本地直接读,思路是正确的,只是文件路径的设置需要注意一下 

比如: 
如果,ehcache.xsd 和 ehcache.xml文件同目录下面 
Java代码   收藏代码
  1. <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  2.     xsi:noNamespaceSchemaLocation="ehcache.xsd"  
  3.     updateCheck="false" dynamicConfig="false">  

这样配置是错误的,加载不了的; 
那么要如何配置
Java代码   收藏代码
  1. xsi:noNamespaceSchemaLocation=""  
? 
看了一下源代码
Java代码   收藏代码
  1. org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(InputSource inputSource, Resource resource)  

Resource:我首先想到的就是:classpath:META-INF/spring/ehcache.xsd 
没有仔细看,直接改上去: 
Java代码   收藏代码
  1. <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
  2.     xsi:noNamespaceSchemaLocation="classpath:META-INF/spring/ehcache.xsd"  
  3.     updateCheck="false" dynamicConfig="false">  
<think>好的,我现在要帮用户完成基于决策树的交通信号灯优化模型的毕业设计。用户需要利用SUMO仿真软件生成数据,并编写TraCI接口的代码来收集所需数据。首先,我需要理解用户的需求。 用户提供的路网文件看起来是标准的SUMOnet.xml文件,但具体结构没有详细给出。不过,不管路网的具体结构如何,TraCI接口的代码结构应该是类似的。用户需要的数据可能包括交通流量、车辆等待时间、信号灯状态等,这些数据将用于训练决策树模型。 接下来,我需要考虑如何通过TraCI获取这些数据。通常,在SUMO仿真中,每个交通信号灯(junction)都有其状态,比如红灯、绿灯等。车辆的等待时间可以通过检测车辆在接近路口时的速度或停止时间来计算。此外,车流量可以通过统计每个车道上的车辆数来获得。 首先,用户需要安装SUMO并确保TraCI库可用。然后,编写Python脚本,连接到SUMO的仿真进程,并在每个仿真步骤中收集数据。可能需要的数据包括: 1.当前信号灯的状态和相位持续时间。2. 各车道的车辆数量。 3.车辆的等待时间(例如,车辆速度低于某个阈值的时间)。 4.车辆排队长度(即停止的车辆数)。 数据收集后,可以保存为CSV文件,方便后续处理和分析。 在代码实现上,需要启动SUMO仿真,连接到TraCI,然后在每一步循环中提取所需信息。例如,使用traci.trafficlight.getPhase()获取当前相位,traci.lane.getLastStepVehicleNumber()获取车道车辆数,traci.vehicle.getSpeed()来检测车辆是否在等待。 需要注意的是,用户可能需要根据实际路网的结构调整车道ID和信号灯ID。例如,用户的路网可能有不同的junction ID,需要正确指定这些ID才能获取正确的数据。 另外,数据收集的频率(每个仿真步骤)可能会影响数据量和处理速度,需要根据仿真时间步长和需求来调整。数据的存储结构也需要合理设计,确保每个时间步的数据能够正确关联。 可能遇到的问题包括TraCI连接失败、错误的ID导致数据获取失败,或者数据收集不全面。因此,代码中需要加入异常处理,或者在运行前检查路网中的元素ID是否正确。最后,用户可能需要运行多次仿真,调整交通流量或信号灯参数,以生成足够多样化的数据供模型训练。因此,代码可能需要支持不同的仿真配置或场景。</think>是通过TraCI接口获取交通信号灯优化所需数据的完整Python代码实现: ```python import traci import csv import os import time from datetime import datetime # SUMO环境配置 sumo_binary = "sumo-gui" # 或使用"sumo"进行无界面运行 sumocfg_file = "your_config.sumocfg" port = 8873 # 数据存储配置 output_dir = "simulation_data" os.makedirs(output_dir, exist_ok=True) filename = f"tl_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv" # 初始化数据采集参数 simulation_steps = 3600 # 仿真时长(秒) data_interval = 30 # 数据采集间隔(秒) current_interval = 0 # 交通灯信息(需要根据实际路网修改) tl_ids = ["J0", "J1"] # 信号灯ID列表 lane_mapping = { # 各方向车道映射 "J0": {"north": ["lane0_0", "lane1_0"], "south": ["lane2_0", "lane3_0"], "east": ["lane4_0", "lane5_0"], "west": ["lane6_0", "lane7_0"]}, "J1": {...} } # 创建CSV文件并写入表头 with open(os.path.join(output_dir, filename), 'w', newline='') as f: writer = csv.writer(f) header = [ 'timestamp', 'tl_id', 'phase', 'phase_duration', 'north_flow', 'south_flow', 'east_flow', 'west_flow', 'north_queue', 'south_queue', 'east_queue', 'west_queue', 'avg_wait_time' ] writer.writerow(header) def get_queue_length(lanes): """计算指定车道的排队长度""" queue_count = 0 for lane in lanes: vehicles = traci.lane.getLastStepVehicleIDs(lane) for veh in vehicles: if traci.vehicle.getSpeed(veh) < 0.1: # 速度低于0.1m/s视为排队 queue_count += 1 return queue_count def get_wait_time(lanes): """计算平均等待时间""" total_wait = 0 count = 0 for lane in lanes: vehicles = traci.lane.getLastStepVehicleIDs(lane) for veh in vehicles: total_wait += traci.vehicle.getAccumulatedWaitingTime(veh) count += 1 return total_wait / count if count > 0 else 0 def collect_tl_data(tl_id): """采集单个交通灯的数据""" data = {} # 基础信息 data['timestamp'] = traci.simulation.getTime() data['tl_id'] = tl_id data['phase'] = traci.trafficlight.getPhase(tl_id) data['phase_duration'] = traci.trafficlight.getPhaseDuration(tl_id) # 车道流量数据 directions = ['north', 'south', 'east', 'west'] for direction in directions: lanes = lane_mapping[tl_id][direction] # 流量统计 data[f'{direction}_flow'] = sum( [traci.lane.getLastStepVehicleNumber(lane) for lane in lanes] ) # 排队长度 data[f'{direction}_queue'] = get_queue_length(lanes) # 平均等待时间 all_lanes = [l for d in lane_mapping[tl_id].values() for l in d] data['avg_wait_time'] = get_wait_time(all_lanes) return data # 启动SUMO仿真 traci.start([sumo_binary, '-c', sumocfg_file, '--remote-port', str(port)]) try: while traci.simulation.getTime() < simulation_steps: traci.simulationStep() current_time = traci.simulation.getTime() # 按间隔采集数据 if current_time >= current_interval: for tl_id in tl_ids: tl_data = collect_tl_data(tl_id) # 写入CSV文件 with open(os.path.join(output_dir, filename), 'a', newline='') as f: writer = csv.writer(f) writer.writerow([ tl_data['timestamp'], tl_data['tl_id'], tl_data['phase'], tl_data['phase_duration'], tl_data['north_flow'], tl_data['south_flow'], tl_data['east_flow'], tl_data['west_flow'], tl_data['north_queue'], tl_data['south_queue'], tl_data['east_queue'], tl_data['west_queue'], tl_data['avg_wait_time'] ]) current_interval += data_interval except Exception as e: print(f"仿真异常终止: {str(e)}") finally: traci.close() ``` 代码解释: 1. **初始化配置**:设置SUMO执行路径、配置文件和数据存储路径 2. **数据采集函数**: - `get_queue_length()`:通过检测车辆速度计算排队长度 - `get_wait_time()`:统计车辆累计等待时间 - `collect_tl_data()`:采集单个信号灯的完整数据 3. **主循环**: - 按设定时间步长推进仿真 - 定期采集各信号灯数据 - 将数据写入CSV文件 需要准备的工作: 1. 根据实际路网修改`tl_ids`和`lane_mapping` 2. 创建对应的sumocfg配置文件 3. 调整数据采集间隔和仿真时长 建议采集的数据维度: - 时间戳 - 信号灯当前相位 - 各方向车流量 - 排队长度 - 平均等待时间 - 相位持续时间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值