AI之多层感知机

多层感知机的基本知识

  深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

隐藏层

  下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。

多层感知机的神经网络图

表达公式

  具体来说,给定一个小批量样本 X ∈ R n × d \pmb{X}∈\pmb{R}^{n×d} XXXRRRn×d,其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为H,有 H ∈ R n × h \pmb{H}∈\pmb{R}^{n×h} HHHRRRn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为 W h ∈ R d × h \pmb{W}_h∈\pmb{R}^{d×h} WWWhRRRd×h b h ∈ R 1 × h \pmb{b}_h∈\pmb{R}^{1×h} bbbhRRR1×h,输出层的权重和偏差参数分别为 W o ∈ R h × q \pmb{W}_o∈\pmb{R}^{h×q} WWWoRRRh×q b o ∈ R 1 × q \pmb{b}_o∈\pmb{R}^{1×q} bbboRRR1×q
  我们先来看一种含单隐藏层的多层感知机的设计。其输出 O ∈ R n × q O∈R^{n×q} ORn×q的计算为
H = X W h + b h , O = H W o + b o \pmb{H=XW}_h+\pmb{b}_h,\pmb{O=HW}_o+\pmb{b}_o H=XWH=XWH=XWh+bbbh,O=HWO=HWO=HWo+bbbo
  也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o \pmb{O=(XW}_h+\pmb{b}_h)\pmb{W}_o+\pmb{b}_o=\pmb{XW}_h\pmb{W}_o+\pmb{b}_h\pmb{W}_o+\pmb{b}_o O=(XWO=(XWO=(XWh+bbbh)WWWo+bbbo=XWXWXWhWWWo+bbbhWWWo+bbbo
  从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为 W h W o \pmb{W}_h\pmb{W}_o WWWhWWWo,偏差参数为 b h W o + b o \pmb{b}_h\pmb{W}_o+\pmb{b}_o bbbhWWWo+bbbo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

激活函数

  上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
  下面我们介绍几个常用的激活函数:

ReLU函数

  ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为
R e L U ( x ) = m a x ( x , 0 ) . ReLU(x)=max(x,0). ReLU(x)=max(x,0).
  可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)

def xyplot(x_vals, y_vals, name):
    # d2l.set_figsize(figsize=(5, 2.5))
    plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
    plt.xlabel('x')
    plt.ylabel(name + '(x)')

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')
 
y.sum().backward()
xyplot(x, x.grad, 'grad of relu')
Sigmoid函数

  sigmoid函数可以将元素的值变换到0和1之间:
s i g m o i d ( x ) = 1 1 + e x p ( − x ) . sigmoid(x)=\frac{1}{1+exp(−x)}. sigmoid(x)=1+exp(x)1.

y = x.sigmoid()
xyplot(x, y, 'sigmoid')

  依据链式法则,sigmoid函数的导数
s i g m o i d ′ ( x ) = s i g m o i d ( x ) ( 1 − s i g m o i d ( x ) ) . sigmoid^′(x)=sigmoid(x)(1−sigmoid(x)). sigmoid(x)=sigmoid(x)(1sigmoid(x)).
  下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。

x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')
tanh函数

  tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
t a n h ( x ) = 1 − e x p ( − 2 x ) 1 + e x p ( − 2 x ) . tanh(x)=\frac{1−exp(−2x)}{1+exp(−2x)}. tanh(x)=1+exp(2x)1exp(2x).
  我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

y = x.tanh()
xyplot(x, y, 'tanh')

  依据链式法则,tanh函数的导数
t a n h ′ ( x ) = 1 − t a n h 2 ( x ) . tanh^′(x)=1−tanh^2(x). tanh(x)=1tanh2(x).
  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。

x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')
关于激活函数的选择

  ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。
  用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。
  在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。
  在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。

多层感知机

  多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
H = ϕ ( X W h + b h ) , O = H W o + b o , \pmb{H}=ϕ(\pmb{XW}_h+\pmb{b}_h),\pmb{O=HW}_o+\pmb{b}_o, HHH=ϕ(XWXWXWh+bbbh),O=HWO=HWO=HWo+bbbo,

其中ϕ表示激活函数。

多层感知机从零开始的实现

import torch
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)

获取训练集

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')

定义模型参数

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for param in params:
    param.requires_grad_(requires_grad=True)

定义激活函数

def relu(X):
    return torch.max(input=X, other=torch.tensor(0.0))

定义网络

def net(X):
    X = X.view((-1, num_inputs))
    H = relu(torch.matmul(X, W1) + b1)
    return torch.matmul(H, W2) + b2

定义损失函数

loss = torch.nn.CrossEntropyLoss()

训练

num_epochs, lr = 5, 100.0
# def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
#               params=None, lr=None, optimizer=None):
#     for epoch in range(num_epochs):
#         train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
#         for X, y in train_iter:
#             y_hat = net(X)
#             l = loss(y_hat, y).sum()
#             
#             # 梯度清零
#             if optimizer is not None:
#                 optimizer.zero_grad()
#             elif params is not None and params[0].grad is not None:
#                 for param in params:
#                     param.grad.data.zero_()
#            
#             l.backward()
#             if optimizer is None:
#                 d2l.sgd(params, lr, batch_size)
#             else:
#                 optimizer.step()  # “softmax回归的简洁实现”一节将用到
#             
#             
#             train_l_sum += l.item()
#             train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
#             n += y.shape[0]
#         test_acc = evaluate_accuracy(test_iter, net)
#         print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
#               % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

多层感知机pytorch实现

import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l

print(torch.__version__)

初始化模型和各个参数

num_inputs, num_outputs, num_hiddens = 784, 10, 256
    
net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens),
        nn.ReLU(),
        nn.Linear(num_hiddens, num_outputs), 
        )
    
for params in net.parameters():
    init.normal_(params, mean=0, std=0.01)

训练

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)

num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值