机器学习
zhangbo_0323
我是一个菜鸟,努力学习,才飞得高。
展开
-
朴素贝叶斯分类问题实例讲解
朴素贝叶斯分类原创 2017-05-28 21:01:57 · 999 阅读 · 1 评论 -
SVD 电影评分问题
请看 http://blog.csdn.net/Dark_Scope/article/details/17228643 极其好呀当然这种矩阵分解的方式也可以应用在其他问题上,比如我就用在天池比赛交通预测上了。因为没有系统的学这部分知识。我个人有个疑惑:传统的SVD(我指的是data=U*xigema*V),看xigema的对角值的占比来进行降维,与这个公式下的矩阵分解有什么异同呢原创 2017-08-23 18:12:38 · 824 阅读 · 0 评论 -
牛顿法拟牛顿法个人笔记——根据《统计学习方法》
实在是懒得在网上记笔记,手写一遍加深理解吧。建议新手也自己推一推公式吧,再见。有个问题:拟牛顿法会不会陷入局部最优解,怎么来理解这里,有点蒙,不像梯度下降那么直观,用图形就好理解了?有大哥看见帮帮忙吧!留言加好友啊!一起机器学习!原创 2017-09-01 22:18:37 · 2843 阅读 · 4 评论 -
ubuntu16.04下 1080ti显卡驱动384.98+cuda9.0+cudnn+caffe 安装过程,本人新测,没毛病
ubuntu16.04下 显卡驱动384.98+cuda9.0+cudnn9.0+caffe 安装我自己尝试的在16.04下安装如上所述,系统安装不多说,主要说显卡驱动往下的部分,和我自己遇到的问题和解决办法。装ubuntu16.04显卡驱动384.98cuda9.0cudnn9.0caffe导入导出Markdown文件丰富的快捷键装ubuntu16.04原系统是win10,在这个基原创 2017-12-05 11:49:27 · 2576 阅读 · 0 评论 -
机器学习数据挖掘从零开始的学习路线——dabo的干货
1年前给师弟写的 刚才整理资料看到了 放网上吧 如果有侵犯到大佬隐私 请私信我 马上删除一:前言1.1 学习机器学习有什么好处 因为成年人的世界讲利弊,所以大部分人在做选择的时候只考虑对自己有极大利益的决定。虽然我们往往否认这样的说辞,但不得不承认多数人就是这么做的。那我就功利的讲讲学机器学习的好处:第一,容易写论文,只要有数据,只要会熟练运用各种算法模型,只要加一点针对数据的改进获得...原创 2018-09-04 23:07:00 · 1293 阅读 · 5 评论 -
交叉熵 CrossEntropy 在tensorflow中的实现方法
tensorflow 中交叉熵损失函数的计算方法下列代码中l1 是自定义计算方式l2 是利用 tf.nn.softmax_cross_entropy_with_logits_v2 输入的真实标签需要onehot处理l3 是利用 tf.nn.sparse_softmax_cross_entropy_with_logits输入的真实标签是原始多分类中的为1的类别的索引l4 是losses...原创 2019-07-09 14:54:04 · 311 阅读 · 0 评论