Double Shortest Paths CSU - 1506-最小费用流

题目:

题目地址

题目大意:

有两个人要从点1走到点n;给出路径之间第一个人走所需要的费用和第二个人走所需要的费用(第二个人如果走的路是第一个人走过的,那么就在第一个人所需的 费用上再加上第二次的费用)
求两个人一共所需要的最小费用!

思路:

比赛的时候翻书看到费用流就感觉很像,可惜从来没学过也没写过费用流,照着模板敲也因为不理解费用流(qaq所以有几个地方需要更改也不知道)根本跑不出结果。

别人的解释:

两点之间建两条边,分别为 容量1费用d 和 容量1费用d+a。由于模板求的是最小费用最大流,而本题需要限制流量为2,所以需要另设源点和汇点(容量为2) 来限制流量.

代码:

(这是用spfa增广的算法,先当模板凑合用,稍微理解一点点用法了)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
const int maxn = 6789;
int T,n,m;

struct Edge
{
    int to,next,cap,flow,cost;
    Edge(){}
    Edge(int _to,int _next,int _cap,int _flow,int _cost)
    {
        to=_to;next=_next;cap=_cap;flow=_flow;cost=_cost;
    }
}e[maxn];

int tot;
int head[maxn];//邻接表存图专用
int pre[maxn]; //储存前驱顶点
int dis[maxn]; //储存到源点s的距离
bool vis[maxn];//是否被放进队列中,spfa专用
int N;//节点总个数,节点编号从0~N-1

void init(int n)
{
    tot=0;
    N=n+2;
    memset(head,-1,sizeof(head));
}

void add_edge(int u,int v,int cap,int cost)
{
    e[tot]=Edge(v,head[u],cap,0,cost);
    head[u]=tot++;

    e[tot]=Edge(u,head[v],0,0,-cost);
    head[v]=tot++;
}

bool spfa(int s,int t)//spfa增广
{
    queue<int>q;
    for (int i=0;i<N;i++)
    {
        dis[i]=INF;
        vis[i]=false;
        pre[i]=-1;
    }
    dis[s]=0;
    vis[s]=true;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=false;
        for(int i=head[u];i!=-1;i=e[i].next)
        {
            int v=e[i].to;
            if(e[i].cap>e[i].flow&&dis[v]>dis[u]+e[i].cost)
            {
                dis[v]=dis[u]+e[i].cost;
                pre[v]=i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t]==-1)
        return false;
    else
        return true;
}

//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
    int flow=0;
    cost=0;
    while(spfa(s,t))
    {
        int Min=INF;
        for (int i=pre[t];i!=-1;i=pre[e[i^1].to])
        {
            if(Min>e[i].cap-e[i].flow)
                Min=e[i].cap-e[i].flow;
        }
        for(int i=pre[t];i!=-1;i=pre[e[i^1].to])
        {
            e[i].flow+=Min;
            e[i^1].flow-=Min;
            cost+=e[i].cost*Min;
        }
        flow+=Min;
    }
    return flow;
}

int main()
{
    int n,m;
    int no=0;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init(n);
        int s=0,t=n+1;
        //建立一个超源点和超汇点0,n+1
        //因为0到1和n到n+1这两条边肯定会走两次,于是cap设为2,费用设为0
        add_edge(s,1,2,0);
        add_edge(n,t,2,0);
        for(int i=1;i<=m;i++)
        {
            int u,v,a,b;
            scanf("%d%d%d%d",&u,&v,&a,&b);
            add_edge(u,v,1,a);//因为一条边只能一个人走,于是cap(容量)置为1
            add_edge(u,v,1,a+b);
        }
        int ans=0;
        minCostMaxflow(s,t,ans);
        printf("Case %d: %d\n",++no,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值