题目:
题目大意:
有两个人要从点1走到点n;给出路径之间第一个人走所需要的费用和第二个人走所需要的费用(第二个人如果走的路是第一个人走过的,那么就在第一个人所需的 费用上再加上第二次的费用)
求两个人一共所需要的最小费用!
思路:
比赛的时候翻书看到费用流就感觉很像,可惜从来没学过也没写过费用流,照着模板敲也因为不理解费用流(qaq所以有几个地方需要更改也不知道)根本跑不出结果。
别人的解释:
两点之间建两条边,分别为 容量1费用d 和 容量1费用d+a。由于模板求的是最小费用最大流,而本题需要限制流量为2,所以需要另设源点和汇点(容量为2) 来限制流量.
代码:
(这是用spfa增广的算法,先当模板凑合用,稍微理解一点点用法了)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
const int maxn = 6789;
int T,n,m;
struct Edge
{
int to,next,cap,flow,cost;
Edge(){}
Edge(int _to,int _next,int _cap,int _flow,int _cost)
{
to=_to;next=_next;cap=_cap;flow=_flow;cost=_cost;
}
}e[maxn];
int tot;
int head[maxn];//邻接表存图专用
int pre[maxn]; //储存前驱顶点
int dis[maxn]; //储存到源点s的距离
bool vis[maxn];//是否被放进队列中,spfa专用
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
tot=0;
N=n+2;
memset(head,-1,sizeof(head));
}
void add_edge(int u,int v,int cap,int cost)
{
e[tot]=Edge(v,head[u],cap,0,cost);
head[u]=tot++;
e[tot]=Edge(u,head[v],0,0,-cost);
head[v]=tot++;
}
bool spfa(int s,int t)//spfa增广
{
queue<int>q;
for (int i=0;i<N;i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
if(e[i].cap>e[i].flow&&dis[v]>dis[u]+e[i].cost)
{
dis[v]=dis[u]+e[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-1)
return false;
else
return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
int flow=0;
cost=0;
while(spfa(s,t))
{
int Min=INF;
for (int i=pre[t];i!=-1;i=pre[e[i^1].to])
{
if(Min>e[i].cap-e[i].flow)
Min=e[i].cap-e[i].flow;
}
for(int i=pre[t];i!=-1;i=pre[e[i^1].to])
{
e[i].flow+=Min;
e[i^1].flow-=Min;
cost+=e[i].cost*Min;
}
flow+=Min;
}
return flow;
}
int main()
{
int n,m;
int no=0;
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
int s=0,t=n+1;
//建立一个超源点和超汇点0,n+1
//因为0到1和n到n+1这两条边肯定会走两次,于是cap设为2,费用设为0
add_edge(s,1,2,0);
add_edge(n,t,2,0);
for(int i=1;i<=m;i++)
{
int u,v,a,b;
scanf("%d%d%d%d",&u,&v,&a,&b);
add_edge(u,v,1,a);//因为一条边只能一个人走,于是cap(容量)置为1
add_edge(u,v,1,a+b);
}
int ans=0;
minCostMaxflow(s,t,ans);
printf("Case %d: %d\n",++no,ans);
}
return 0;
}