backtrack回溯算法

转自台湾师范大学acm课程

Enumerate all n-tuples

列舉重複排列。這裡示範:列舉出「數字 1 到 10 選擇五次」全部可能的情形。
製作一個陣列,用來存放一組可能的排列(數據)。

int solution[5];

例如 solution[0] = 4 表示第一個抓到的數字是 4 , solution[4] = 9 表示第五個抓到的數字是 9 。陣列中不同的格子,就是 solution vector 當中不同的維度。

遞迴程式碼設計成這樣:

int solution[5];    // 用來存放一組可能的數據

void print_solution()   // 印出一組可能的數據
{
    for (int i=0; i<5; i++)
        cout << i << ' ';
    cout << endl;
}

void backtrack(int n)   // n 為現在正在列舉的維度
{
    // it's a solution
    if (n == 5)
    {
        print_solution();
        return;
    }

    // 逐步列舉數字1到10,並且各自遞迴下去,列舉之後的維度
    solution[n] = 1;
    backtrack(n+1);

    solution[n] = 2;
    backtrack(n+1);

    ......

    solution[n] = 10;
    backtrack(n+1);
}

int main()
{
    backtrack(0);
}

輸出結果會照字典順序排列。附送一張簡圖:
image.png

注解: 其实就是利用递归来打印出整个字典顺序。注意递归函数中的顺序和递归停止条件。

Permutation

permutation 是「排列」的意思,便是數學課本中「排列組合」的排列。但是這裡並不是要計算排列有多少種,而是實際列舉出所有的排列:

現在有一個集合,裡面有 1 到 n 的數字,列出所有數字的排列,同樣的排列不能重複列出來。例如 {1,2,3} 所有的排列就是 {1,2,3} 、 {1,3,2} 、 {2,1,3} 、 {2,3,1} 、 {3,1,2} 、 {3,2,1} 。

permutation 的問題可以使用 backtracking 的技術來解決!

依序窮舉每個位置,針對每個位置,試著填入各種數字
一般來說, permutation 的程式碼都會長成這樣的格式:

int solution[MAX];  // 用來存放一組可能的答案
bool used[MAX];     // 紀錄數字是否使用過,用過為 true

void permutation(int k, int n)
{
    if (k == n) // it's a solution
    {
        for (int i=0; i<n; i++)
            cout << solution[i] << " ";
        cout << endl;
    }
    else
    {
        for (int i=0; i<n; i++) // 試著將第 k 格填入各種數字
            if (!used[i])
            {
                used[i] = true;     // 紀錄用過的數字

                solution[k] = i;    // 將第 k 格填入數字 k
                permutation(k+1, n);    // iterate next position

                used[i] = false;    // 回收用完的數字
            }
    }
}

int main()
{
    for (int i=0; i < MAX; i++) // initialization
        used[i] = false;

    permutation(0, 10); // 印出0~9,一共10個數字的所有排列
}

permutation 的問題都可以使用這段程式碼來解決。而且這支程式,是以字典順序來列舉出所有排列。所以它真的很有用,不妨參考看看。

依序窮舉每個數字,針對每個數字,試著填入各個位置
另外還有一種作法是生做這個樣子的:

int solution[MAX];  // 用來存放一組可能的答案
bool filled[MAX];   // 紀錄各個位置是否填過數字,填過為 true

void permutation(int v, int n)
{
    if (v == n) // it's a solution
    {
        for (int i=0; i<n; i++)
            cout << solution[i] << " ";
        cout << endl;
    }
    else
    {
        for (int i=0; i<n; i++) // 試著將數字 v 填入各個位置
            if (!filled[i])
            {
                filled[i] = true;   // 紀錄填過的位置

                solution[i] = v;    // 將數字 v 填入第 i 格
                permutation(v+1, n);    // iterate next position

                filled[i] = false;  // 回收位置
            }
    }
}

int main()
{
    for (int i=0; i<MAX; i++)   // initialization
        filled[i] = false;

    permutation(0, 10); // 印出0~9,一共10個數字的所有排列
}

這也是一個不錯的方法,列出來提供大家參考。多接觸各式各樣的方法,能激發一些創意呢!

為了講解方便,以下的文章以一開始提到的方法當作基準。

字串排列
有個常見的問題是:列出字串 abc 的所有排列,要依照字典順序列出。其實這就跟剛才介紹的東西大同小異,只要稍加修改程式碼即可。

char s[3] = {'a', 'b', 'c'};    // 字串,需要先由小到大排序過
char solution[3];   // 用來存放一組可能的答案
bool used[3];       // 紀錄該字母是否使用過,用過為 true

void permutation(int k, int n)
{
    if (k == n) // it's a solution
    {
        for (int i=0; i<n; i++)
            cout << solution[i];
        cout << endl;
    }
    else
    {
        // 針對solution[i]這個位置,列舉所有字母,並各自遞迴
        for (int i=0; i<n; i++)
            if (!used[i])
            {
                used[i] = true;

                solution[k] = s[i]; // 填入字母
                permutation(k+1, n);

                used[i] = false;
            }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值