【微服务】SpringBoot 整合Redis Stack 构建本地向量数据库相似性查询

目录

一、前言

二、向量数据库介绍

2.1 什么是向量数据库

2.2 向量数据库特点

2.3 向量数据库使用场景

三、常用的向量数据库解决方案

3.1 Milvus

3.1.1 Milvus是什么

3.1.2 Milvus主要特点

3.2 Faiss

3.2.1 Faiss是什么

3.2.2 Faiss主要特点

3.3 Pinecone

3.3.1 Pinecone是什么

3.3.2 Pinecone主要特点

3.4 Weaviate

3.4.1 Weaviate介绍

3.4.2 Weaviate主要特点

3.5 Redis Stack

3.5.1 Redis Stack介绍

3.5.2 Redis Stack核心模块

3.5.3 Redis Stack主要特点

3.5.4 Redis Stack应用场景

四、Redis向量数据库介绍

4.1 redis向量数据库是什么

4.2 向量检索核心原理

4.2.1 匹配原理

4.2.2 具体实现过程

五、整合springboot 实现向量数据库相似性搜索

5.1 前置准备

5.1.1 docker搭建Redis-Stack

5.1.2 导入maven依赖

5.1.3 获取apikey

5.1.4 添加配置文件

5.2 文本嵌入代码实现过程

5.2.1 添加一个测试接口

5.3 ETL Pipeline

5.3.1 Spring AI ETL 介绍

5.3.2 Spring AI 处理ETL完整过程

5.3.3 Spring AI ETL 技术框架

5.3.3.1 读取器 DocumentReader

5.3.3.2 文档转换器 DocumentTransformer

5.3.3.3 文档写入器 DocumentWriter

5.4 Spring AI 文档读取操作演示

5.4.1 文件读取代码演示

5.5 Spring AI 文档转换操作演示

5.5.1 添加测试接口

5.6 文档存储

5.6.1 导入依赖文件

5.6.2 配置redis信息

5.6.3 增加一个redis的向量数据库配置类

5.6.4 增加嵌入文档接口

5.6.5 增加文档检索接口

六、写在文末


一、前言

AI工具的使用让数据检索的需求场景变得越来越多,也越来越复杂,传统的关系型数据库尽管可以满足日常各类关系数据的存储,但是遇到一些文档类型,非结构化的数据时,其作用和效果就会打折扣,而且数据不仅仅是存储的需要,也需要能够满足数据分析的场景,这种情况下,就可以考虑使用向量数据库了。

二、向量数据库介绍

2.1 什么是向量数据库

向量数据库是一种优化后的数据库系统,专门设计用于高效地存储和检索高维向量数据。这些向量数据通常是从原始数据(如文本、图像、音频等)中提取的特征表示。向量数据库的核心优势在于其能够快速地进行相似性搜索,即找到与给定向量最相似的向量。

### 如何构建向量数据库 构建向量数据库涉及多个方面,包括选择合适的工具、框架以及具体的实现方法。以下是关于如何构建向量数据库的关键要点: #### 1. 工具与框架的选择 在选择向量数据库的工具和框架时,需考虑其性能、扩展性和易用性等因素。常见的向量数据库解决方案有 Faiss 和 Redis Stack。 - **Faiss** 是由 Facebook AI 研究院开发的一个高效相似性搜索和聚类库,适用于大规模数据集上的高维空间相似性搜索[^3]。 - **Redis Stack** 提供了一种轻量化的方式,在本地环境中可以快速搭建向量数据库,并支持复杂的相似性查询操作[^2]。 #### 2. 创建向量数据库的具体步骤 无论是使用 Faiss 还是 Redis Stack,都需要遵循一定的流程来完成向量数据库的创建。 ##### 使用 Faiss 的具体步骤 ```python import faiss import numpy as np # 定义维度大小 dimension = 128 # 初始化索引结构 (Flat Index) index = faiss.IndexFlatL2(dimension) # 插入向量到索引中 vectors = np.random.rand(10, dimension).astype('float32') index.add(vectors) # 执行最近邻查找 query_vector = np.random.rand(1, dimension).astype('float32') k = 5 # 返回最接近的前 k 个向量 distances, indices = index.search(query_vector, k=k) print(indices) # 输出找到的向量索引位置 ``` 上述代码展示了如何通过 Python 调用 Faiss 来初始化一个简单的向量数据库,并执行基本的相似性查询功能。 ##### 使用 Redis Stack 的具体步骤 对于 Spring Boot 用户来说,可以通过整合 Redis Stack 实现更灵活的功能: ```java @Configuration public class RedisConfig { @Bean public LettuceConnectionFactory redisConnectionFactory() { return new LettuceConnectionFactory(); } @Bean public StringRedisTemplate stringRedisTemplate(LettuceConnectionFactory connectionFactory){ return new StringRedisTemplate(connectionFactory); } } ``` 此 Java 配置片段用于设置连接至 Redis 数据库的基础架构,从而进一步利用 Redis Stack 中提供的向量存储能力。 #### 3. 性能优化与效果评估 为了确保所构建向量数据库具有良好的表现力,还需要对其进行细致的效果评估工作。这通常涉及到测试不同参数下的检索速度及准确性等问题[^1]。 --- ###
评论 217
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值