需求
在网络传输中,数据包实际是突发的,这可能会导致一些问题,比如网络拥塞、缓冲区膨胀,甚至是数据包丢失,为了解决这些问题需要在发送数据的时候尽可能保证平滑。
“平滑发送”通常指的是控制数据包的发送速率,使其在网络中的分布更加均匀,从而减少网络拥塞的可能性。这对于实时应用特别重要,比如视频会议、在线游戏等场景中,需要发送一个视频轨道和一个音频轨道,如果一次将一个视频帧发送到网络上,并且这些数据包假设需要 100ms 达到对端——这意味着你现在阻塞了任何音频数据包及时到达远端
接收端为了保证音画同步会出现延时
实现
平滑发送的作用
- 减少网络拥塞:通过控制数据包的发送速率,可以降低网络拥塞的风险,提高数据传输的质量。
- 改善用户体验:对于实时应用来说,平滑的数据流可以减少延迟和抖动,提供更好的用户体验。
- 资源利用效率:合理分配带宽资源,确保所有连接都能获得足够的服务而不浪费网络资源
常用方法
- 固定间隔发送:这是最简单的方法,即每隔一定的时间间隔发送一定数量数据包。这种方法适用于对实时性要求不高的应用。
效果:容易实现,但在网络状况变化时可能不够灵活。 - 基于窗口的算法:
滑动窗口:维护一个发送窗口,根据接收端的反馈调整窗口大小。这通常结合流量控制机制、带框估算使用
效果:比固定间隔发送更智能,能够更好地适应网络变化。 - 自适应速率控制:
动态调整发送速率:根据网络条件(如丢包率、往返时间RTT等)动态调整发送速率。
效果:能够较好地应对网络波动,提供更稳定的传输质量。 - 基于预测的算法:
预测网络状况:通过对历史数据的分析,预测未来的网络状况,从而提前调整发送策略。
效果:需要复杂的计算,但能提供较高的服务质量
优先级队列
在网络传输中,采用平滑发送首先要保证的就是数据的发送顺序 优先级队列可以用来确保具有较高优先级的数据包能够被优先处理。
这在实时通信、视频流传输等场景中尤为重要,因为这些应用往往对延迟敏感。
比如在游戏或者音视频实时通信场景中
优先级要求
指令包>音频包 > 重传包 > 视频包 > FEC 包
优先级队列是一种常用的数据结构,其中元素具有不同的优先级。队列中的元素按照其优先级排序,当从队列中移除元素时,总是移除具有最高优先级的元素。
例子:
Python 标准库中的 heapq
模块提供了一个高效的最小堆实现,可以用来构建优先级队列。最小堆的特点是父节点的值小于或等于其子节点的值,因此堆顶元素总是最小的。我们可以通过给每个数据包分配一个优先级(例如,越小的数值表示越高的优先级),并使用
heapq 来管理这些数据包
import heapq
import time
import random
class Packet:
def __init__(self, id, priority):
self.id = id
self.priority = priority # 优先级
def __lt__(self, other):
# 为了使 Packet 类能够被 heapq 使用,我们需要定义比较操作
return self.priority < other.priority
def send_packet(packet):
print(f"Sending packet {packet.id} with priority {packet.priority}")
def main():
priority_queue = []
packets_sent = 0
# 模拟数据包到达
for i in range(10):
priority = random.randint(1, 10)
packet = Packet(i, priority)
heapq.heappush(priority_queue, packet)
print(f"Packet {i} with priority {priority} added to the queue.")
# 模拟发送过程
while priority_queue:
# 每隔一段时间检查队列并发送最高优先级的数据包
time.sleep(0.5) # 模拟发送间隔
if priority_queue:
highest_priority_packet = heapq.heappop(priority_queue)
send_packet(highest_priority_packet)
packets_sent += 1
print(f"Sent {packets_sent} packets so far.")
if __name__ == "__main__":
main()
最小堆
最小堆是一种非常实用的数据结构,广泛应用于各种算法中,特别是涉及到优先级队列的地方,通过下面代码可以很方便理解
class MinHeap:
def __init__(self):
self.heap = [] //数组
def parent(self, i): # 父节点
return (i - 1) // 2
def left_child(self, i):
return 2 * i + 1
def right_child(self, i):
return 2 * i + 2
def get(self, i):
return self.heap[i]
def swap(self, i, j): #交换 i j 位置数据
self.heap[i], self.heap[j] = self.heap[j], self.heap[i]
def insert(self, key): # 插入数据
self.heap.append(key)
self.swim(len(self.heap) - 1)
def swim(self, k): # 从给定索引处开始向上移动元素
while k > 0 and self.get(self.parent(k)) > self.get(k):
self.swap(k, self.parent(k))
k = self.parent(k)
def extract_min(self): # 下沉操作来保持堆的性质
if len(self.heap) == 0:
return None
elif len(self.heap) == 1:
return self.heap.pop()
else:
min_element = self.heap[0]
self.heap[0] = self.heap.pop()
self.sink(0)
return min_element
def sink(self, k):
while True:
left = self.left_child(k)
right = self.right_child(k)
smallest = k
if left < len(self.heap) and self.get(left) < self.get(k):
smallest = left
if right < len(self.heap) and self.get(right) < self.get(smallest):
smallest = right
if smallest == k:
break
self.swap(k, smallest)
k = smallest
# 使用示例
if __name__ == "__main__":
heap = MinHeap()
heap.insert(3)
heap.insert(2)
heap.insert(15)
heap.insert(5)
heap.insert(4)
heap.insert(45)
print("Extracted min:", heap.extract_min())
print("Extracted min:", heap.extract_min())
漏桶算法+优先级
漏桶算法(Leaky Bucket Algorithm)是一种常用的流量控制算法,用于平滑网络数据流,防止突发流量导致网络拥塞。该算法的核心思想是将数据包放入一个“桶”中,然后以恒定的速度从桶中流出。这样即使输入的数据流是突发性的,输出的数据流也会变得更加平滑。
漏桶算法原理
- 桶的容量:桶有一个固定的容量,超过这个容量的数据包会被丢弃。
- 数据流入:数据包以任意速率进入桶中。
- 数据流出:数据包以固定的速率从桶中流出
测试代码
- 初始化:创建一个容量为 bucket_size 的桶,并设置一个优先级队列 priority_queue 和一- 个计时器 leak_rate 表示每秒流出的数据量。
- 数据包到达:当数据包到达时,将其按照优先级插入到优先级队列中。
- 数据包流出:按照漏桶算法的速率定时从优先级队列中取出数据包并发送。
function initialize(bucket_size, leak_rate):
bucket = new Bucket(bucket_size)
priority_queue = new PriorityQueue()
timer = setTimer(leak_rate)
function insertPacket(packet, priority):
// 将数据包按照优先级插入到优先级队列中
priority_queue.insert(packet, priority)
function processPacket():
// 如果桶未满且优先级队列中有数据包
if not bucket.isFull() and not priority_queue.isEmpty():
packet = priority_queue.extractHighestPriority()
// 尝试将数据包放入桶中
if bucket.tryAdd(packet):
// 数据包成功添加到桶中
sendPacket(packet)
else:
// 桶已满,丢弃数据包
dropPacket(packet)
function sendPacket(packet):
// 发送数据包
network.send(packet)
function dropPacket(packet):
// 丢弃数据包
log("Dropped packet: " + packet)
function timerCallback():
// 定时处理数据包
processPacket()
// 重新设置定时器
timer = setTimer(leak_rate)
// 主函数
function main():
initialize(bucket_size, leak_rate)
// 当数据包到达时调用 insertPacket
onPacketArrival(insertPacket)
// 启动定时器
startTimer(timerCallback)
相同优先级数据包处理
在使用最小堆实现的优先级队列中处理优先级相同的元素时,通常需要一种方法来区分这些元素,以确保它们在队列中的正确排序。有几种常见的方法可以实现这一点:
- 使用时间戳:为每个元素分配一个时间戳,当两个元素具有相同的优先级时,使用时间戳作为次要排序依据。
- 使用序列号:为每个元素分配一个序列号,当两个元素具有相同的优先级时,使用序列号作为次要排序依据。
- 使用额外的排序字段:为每个元素添加一个额外的排序字段,当两个元素具有相同的优先级时,使用这个字段作为次要排序依据。
测试代码
import heapq
class PriorityItem:
def __init__(self, priority, timestamp, sequence_number, data):
self.priority = priority
self.timestamp = timestamp
self.sequence_number = sequence_number
self.data = data
def __lt__(self, other):
# 主要排序依据是优先级
if self.priority == other.priority:
# 如果优先级相同,则使用时间戳作为次要排序依据
if self.timestamp == other.timestamp:
# 如果时间戳相同,则使用序列号作为再次排序依据
return self.sequence_number < other.sequence_number
return self.timestamp < other.timestamp
return self.priority < other.priority
class PriorityQueue:
def __init__(self):
self.queue = []
def insert(self, item):
heapq.heappush(self.queue, item)
def extract(self):
if self.queue:
return heapq.heappop(self.queue)
return None
def is_empty(self):
return len(self.queue) == 0
# 示例用法
if __name__ == "__main__":
queue = PriorityQueue()
# 假设的数据包
data_packets = [
(0x01, 1000, 1, I video data 1'),
(0x01, 1001, 2, I video data 2'),
(0x02, 1002, 3,I video data 3'),
(0x01, 1003, 4, I video data 4')
]
# 插入数据包
for priority, timestamp, sequence_number, data in data_packets:
packet = PriorityItem(priority, timestamp, sequence_number, data)
queue.insert(packet)
# 从队列中提取数据包
while not queue.is_empty():
packet = queue.extract()
print(f"Processing RTP packet with priority {packet.priority}, timestamp {packet.timestamp}, sequence number {packet.sequence_number}")
实际使用
WebRTC 中 PrioritizedPacketQueue
模块是一个用于管理具有不同优先级的数据包的队列。在WebRTC中,这样的队列可以用来确保高优先级的数据包(如关键帧)能够被优先处理,从而提高实时通信的质量。
PrioritizedPacketQueue 是一个使用最小堆实现的优先级队列,它可以按优先级顺序处理数据包。每个数据包都有一个优先级,优先级越低的数据包会被优先处理。
PrioritizedPacketQueue 主要功能
- 插入数据包:将新的数据包插入队列中。
- 提取数据包:从队列中提取优先级最高的数据包。
- 清空队列:清空队列中的所有数据包。
- 获取队列状态:查询队列中剩余的数据包数量。
参考
WebRTC PacedSender 原理分析