网络传输-平滑发送

需求

在网络传输中,数据包实际是突发的,这可能会导致一些问题,比如网络拥塞、缓冲区膨胀,甚至是数据包丢失,为了解决这些问题需要在发送数据的时候尽可能保证平滑。

“平滑发送”通常指的是控制数据包的发送速率,使其在网络中的分布更加均匀,从而减少网络拥塞的可能性。这对于实时应用特别重要,比如视频会议、在线游戏等场景中,需要发送一个视频轨道和一个音频轨道,如果一次将一个视频帧发送到网络上,并且这些数据包假设需要 100ms 达到对端——这意味着你现在阻塞了任何音频数据包及时到达远端
接收端为了保证音画同步会出现延时

实现

平滑发送的作用

  • 减少网络拥塞:通过控制数据包的发送速率,可以降低网络拥塞的风险,提高数据传输的质量。
  • 改善用户体验:对于实时应用来说,平滑的数据流可以减少延迟和抖动,提供更好的用户体验。
  • 资源利用效率:合理分配带宽资源,确保所有连接都能获得足够的服务而不浪费网络资源

常用方法

  • 固定间隔发送:这是最简单的方法,即每隔一定的时间间隔发送一定数量数据包。这种方法适用于对实时性要求不高的应用。
    效果:容易实现,但在网络状况变化时可能不够灵活。
  • 基于窗口的算法:
    滑动窗口:维护一个发送窗口,根据接收端的反馈调整窗口大小。这通常结合流量控制机制、带框估算使用
    效果:比固定间隔发送更智能,能够更好地适应网络变化。
  • 自适应速率控制:
    动态调整发送速率:根据网络条件(如丢包率、往返时间RTT等)动态调整发送速率。
    效果:能够较好地应对网络波动,提供更稳定的传输质量。
  • 基于预测的算法:
    预测网络状况:通过对历史数据的分析,预测未来的网络状况,从而提前调整发送策略。
    效果:需要复杂的计算,但能提供较高的服务质量

优先级队列

在网络传输中,采用平滑发送首先要保证的就是数据的发送顺序 优先级队列可以用来确保具有较高优先级的数据包能够被优先处理。
这在实时通信、视频流传输等场景中尤为重要,因为这些应用往往对延迟敏感。
比如在游戏或者音视频实时通信场景中
优先级要求
指令包>音频包 > 重传包 > 视频包 > FEC 包

优先级队列是一种常用的数据结构,其中元素具有不同的优先级。队列中的元素按照其优先级排序,当从队列中移除元素时,总是移除具有最高优先级的元素。
例子:

Python 标准库中的 heapq
模块提供了一个高效的最小堆实现,可以用来构建优先级队列。最小堆的特点是父节点的值小于或等于其子节点的值,因此堆顶元素总是最小的。我们可以通过给每个数据包分配一个优先级(例如,越小的数值表示越高的优先级),并使用
heapq 来管理这些数据包

import heapq
import time
import random

class Packet:
    def __init__(self, id, priority):
        self.id = id
        self.priority = priority # 优先级

    def __lt__(self, other):
        # 为了使 Packet 类能够被 heapq 使用,我们需要定义比较操作
        return self.priority < other.priority

def send_packet(packet):
    print(f"Sending packet {packet.id} with priority {packet.priority}")

def main():
    priority_queue = []
    packets_sent = 0
    # 模拟数据包到达
    for i in range(10):
        priority = random.randint(1, 10)
        packet = Packet(i, priority)
        heapq.heappush(priority_queue, packet)
        print(f"Packet {i} with priority {priority} added to the queue.")

    # 模拟发送过程
    while priority_queue:
        # 每隔一段时间检查队列并发送最高优先级的数据包
        time.sleep(0.5)  # 模拟发送间隔
        if priority_queue:
            highest_priority_packet = heapq.heappop(priority_queue)
            send_packet(highest_priority_packet)
            packets_sent += 1
            print(f"Sent {packets_sent} packets so far.")

if __name__ == "__main__":
    main()

最小堆

最小堆是一种非常实用的数据结构,广泛应用于各种算法中,特别是涉及到优先级队列的地方,通过下面代码可以很方便理解

class MinHeap:
    def __init__(self):
        self.heap = [] //数组 
    def parent(self, i): # 父节点
        return (i - 1) // 2
    def left_child(self, i):
        return 2 * i + 1
    def right_child(self, i):
        return 2 * i + 2

    def get(self, i):
        return self.heap[i]

    def swap(self, i, j): #交换 i j 位置数据 
        self.heap[i], self.heap[j] = self.heap[j], self.heap[i]

    def insert(self, key):  # 插入数据
        self.heap.append(key)
        self.swim(len(self.heap) - 1)

    def swim(self, k):  # 从给定索引处开始向上移动元素
        while k > 0 and self.get(self.parent(k)) > self.get(k):
            self.swap(k, self.parent(k))
            k = self.parent(k)

    def extract_min(self): # 下沉操作来保持堆的性质
        if len(self.heap) == 0:
            return None
        elif len(self.heap) == 1:
            return self.heap.pop()
        else:
            min_element = self.heap[0]
            self.heap[0] = self.heap.pop()
            self.sink(0)
            return min_element

    def sink(self, k):
        while True:
            left = self.left_child(k)
            right = self.right_child(k)
            smallest = k

            if left < len(self.heap) and self.get(left) < self.get(k):
                smallest = left
            if right < len(self.heap) and self.get(right) < self.get(smallest):
                smallest = right
            if smallest == k:
                break
            self.swap(k, smallest)
            k = smallest

# 使用示例
if __name__ == "__main__":
    heap = MinHeap()
    heap.insert(3)
    heap.insert(2)
    heap.insert(15)
    heap.insert(5)
    heap.insert(4)
    heap.insert(45)

    print("Extracted min:", heap.extract_min())
    print("Extracted min:", heap.extract_min())

漏桶算法+优先级

漏桶算法(Leaky Bucket Algorithm)是一种常用的流量控制算法,用于平滑网络数据流,防止突发流量导致网络拥塞。该算法的核心思想是将数据包放入一个“桶”中,然后以恒定的速度从桶中流出。这样即使输入的数据流是突发性的,输出的数据流也会变得更加平滑。

漏桶算法原理

  • 桶的容量:桶有一个固定的容量,超过这个容量的数据包会被丢弃。
  • 数据流入:数据包以任意速率进入桶中。
  • 数据流出:数据包以固定的速率从桶中流出

测试代码

  • 初始化:创建一个容量为 bucket_size 的桶,并设置一个优先级队列 priority_queue 和一- 个计时器 leak_rate 表示每秒流出的数据量。
  • 数据包到达:当数据包到达时,将其按照优先级插入到优先级队列中。
  • 数据包流出:按照漏桶算法的速率定时从优先级队列中取出数据包并发送。
function initialize(bucket_size, leak_rate):
    bucket = new Bucket(bucket_size)
    priority_queue = new PriorityQueue()
    timer = setTimer(leak_rate)

function insertPacket(packet, priority):
    // 将数据包按照优先级插入到优先级队列中
    priority_queue.insert(packet, priority)

function processPacket():
    // 如果桶未满且优先级队列中有数据包
    if not bucket.isFull() and not priority_queue.isEmpty():
        packet = priority_queue.extractHighestPriority()
        // 尝试将数据包放入桶中
        if bucket.tryAdd(packet):
            // 数据包成功添加到桶中
            sendPacket(packet)
        else:
            // 桶已满,丢弃数据包
            dropPacket(packet)

function sendPacket(packet):
    // 发送数据包
    network.send(packet)

function dropPacket(packet):
    // 丢弃数据包
    log("Dropped packet: " + packet)

function timerCallback():
    // 定时处理数据包
    processPacket()
    // 重新设置定时器
    timer = setTimer(leak_rate)

// 主函数
function main():
    initialize(bucket_size, leak_rate)
    // 当数据包到达时调用 insertPacket
    onPacketArrival(insertPacket)
    // 启动定时器
    startTimer(timerCallback)

相同优先级数据包处理

在使用最小堆实现的优先级队列中处理优先级相同的元素时,通常需要一种方法来区分这些元素,以确保它们在队列中的正确排序。有几种常见的方法可以实现这一点:

  • 使用时间戳:为每个元素分配一个时间戳,当两个元素具有相同的优先级时,使用时间戳作为次要排序依据。
  • 使用序列号:为每个元素分配一个序列号,当两个元素具有相同的优先级时,使用序列号作为次要排序依据。
  • 使用额外的排序字段:为每个元素添加一个额外的排序字段,当两个元素具有相同的优先级时,使用这个字段作为次要排序依据。
    测试代码
import heapq

class PriorityItem:
    def __init__(self, priority, timestamp, sequence_number, data):
        self.priority = priority
        self.timestamp = timestamp
        self.sequence_number = sequence_number
        self.data = data

    def __lt__(self, other):
        # 主要排序依据是优先级
        if self.priority == other.priority:
            # 如果优先级相同,则使用时间戳作为次要排序依据
            if self.timestamp == other.timestamp:
                # 如果时间戳相同,则使用序列号作为再次排序依据
                return self.sequence_number < other.sequence_number
            return self.timestamp < other.timestamp
        return self.priority < other.priority

class PriorityQueue:
    def __init__(self):
        self.queue = []

    def insert(self, item):
        heapq.heappush(self.queue, item)

    def extract(self):
        if self.queue:
            return heapq.heappop(self.queue)
        return None

    def is_empty(self):
        return len(self.queue) == 0

# 示例用法
if __name__ == "__main__":
    queue = PriorityQueue()

    # 假设的数据包
    data_packets = [
        (0x01, 1000, 1, I video data 1'),
        (0x01, 1001, 2, I video data 2'),
        (0x02, 1002, 3,I video data 3'),
        (0x01, 1003, 4, I video data 4')
    ]

    # 插入数据包
    for priority, timestamp, sequence_number, data in data_packets:
        packet = PriorityItem(priority, timestamp, sequence_number, data)
        queue.insert(packet)

    # 从队列中提取数据包
    while not queue.is_empty():
        packet = queue.extract()
        print(f"Processing RTP packet with priority {packet.priority}, timestamp {packet.timestamp}, sequence number {packet.sequence_number}")

实际使用

WebRTC 中 PrioritizedPacketQueue
模块是一个用于管理具有不同优先级的数据包的队列。在WebRTC中,这样的队列可以用来确保高优先级的数据包(如关键帧)能够被优先处理,从而提高实时通信的质量。
PrioritizedPacketQueue 是一个使用最小堆实现的优先级队列,它可以按优先级顺序处理数据包。每个数据包都有一个优先级,优先级越低的数据包会被优先处理。

PrioritizedPacketQueue 主要功能

  • 插入数据包:将新的数据包插入队列中。
  • 提取数据包:从队列中提取优先级最高的数据包。
  • 清空队列:清空队列中的所有数据包。
  • 获取队列状态:查询队列中剩余的数据包数量。
    参考
    WebRTC PacedSender 原理分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值