hadoop streaming 按字段排序与输出分割详解

1.默认情况

Hadoop streaming的默认情况下,是以”\t”作为分隔符的。对于标准输入来说,每行的第一个”\t” 以前的部分为key,其他部分为对应的value。如果一个”\t”字符没有,则整行都被当做key。这个

2.map阶段的sort与partition

map阶段很重要的阶段包括sort与partition。排序是按照key来进行的。咱们之前讲了默认的key是由”\t”分隔得到的。我们能不能自己控制相关的sort与partition呢?答案是可以的。

先看以下几个参数: 
map.output.key.field.separator: map中key内部的分隔符 
num.key.fields.for.partition: 分桶时,key按前面指定的分隔符分隔之后,用于分桶的key占的列数。通俗地讲,就是partition时候按照key中的前几列进行划分,相同的key会被打到同一个reduce里。 
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner 前两个参数,要配合partitioner选项使用!

stream.map.output.field.separator: map中的key与value分隔符 
stream.num.map.output.key.fields: map中分隔符的位置 
stream.reduce.output.field.separator: reduce中key与value的分隔符 
stream.num.reduce.output.key.fields: reduce中分隔符的位置

3.分桶测试实例

准备数据:

$ cat tmp
1,2,1,1,1
1,2,2,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
1,2,3,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

上传到hdfs中。

cat mapper.sh
#!/bin/bash

cat
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
$ cat reducer.sh
#!/bin/bash

sort
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
#!/bin/bash

streaming=/usr/lib/hadoop-mapreduce/hadoop-streaming-2.5.0-cdh5.2.0.jar

output=/tmp/wanglei/part_out

if hadoop fs -test -d $output
then
    hadoop fs -rm -r $output
fi

hadoop jar $streaming \
    -D map.output.key.field.separator=, \
    -D num.key.fields.for.partition=2 \
    -D stream.reduce.output.field.separator=, \
    -D stream.num.reduce.output.key.fields=4 \
    -D mapred.reduce.tasks=2 \
    -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
    -input /tmp/wanglei/partition \
    -output $output \
    -mapper "sh mapper.sh" \
    -reducer "sh reducer.sh" \
    -file mapper.sh \
    -file reducer.sh
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

代码最后的运行结果:

$ hadoop fs -cat /tmp/wanglei/part_out/part-00000
1,3,1,1 1
1,3,1,1 1
1,3,2,1 1
1,3,2,1 1
1,3,3,1 1
1,3,3,1 1


$ hadoop fs -cat /tmp/wanglei/part_out/part-00001
1,2,1,1 1
1,2,2,1 1
1,2,3,1 1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

稍微解释一下输出: 
1.map阶段,key是按逗号分隔的,partition的阶段取前两个字段,所以前两个字段相同的key都被打到同一个reduce里。这一点从reduce的两个文件结果中就能看出来。 
2.reduce阶段通过stream.reduce.output.field.separator指定分隔符为”,”,通过stream.num.reduce.output.key.fields指定前4个字段为key,所以才会有最终的结果。

需要注意的几个小点: 
1.之前写的代码,当分发的文件有多个的时候,可以用-files指定。但是加了上面的参数以后,再用-files会报错。具体原因未知。 
2.-file 参数必须写在最后面。如果写在-input前面,代码也会报错。具体原因暂时也未知。 
3.-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner参数必须指定,否则代码没法输出预期结果。

4.map阶段输出测试实例

stream.map.output.field.separator与stream.num.map.output.key.fields与上面partition一组参数指定map输出格式是一致的。不一样的地方在stream这组参数是真正用于map端的输出,而partition那组参数是用于分桶!

看下测试代码就清楚了:

#!/bin/bash

streaming=/usr/lib/hadoop-mapreduce/hadoop-streaming-2.5.0-cdh5.2.0.jar

output=/tmp/wanglei/part_out_map

if hadoop fs -test -d $output
then
    hadoop fs -rm -r $output
fi

hadoop jar $streaming \
    -D stream.map.output.field.separator=, \
    -D stream.num.map.output.key.fields=2 \
    -input /tmp/wanglei/partition \
    -output $output \
    -mapper "sh mapper.sh" \
    -file mapper.sh
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
$ hadoop fs -cat /tmp/wanglei/part_out_map/*
1,2 3,1,1
1,2 2,1,1
1,2 1,1,1
1,3 3,1,1
1,3 2,1,1
1,3 1,1,1
1,3 3,1,1
1,3 2,1,1
1,3 1,1,1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

将reducer部分去掉,只输出mapper的结果。可以看出: 
1.mapper阶段输出的k,v以”\t”分隔(框架默认) 
2.mapper阶段以”,”分隔,key占了两个字段。 
3.mapper阶段按key排序,所以1,2开头的数据在前,1,3开头的数据在后!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值