zh3389
码龄4年
  • 339,164
    被访问
  • 77
    原创
  • 106,646
    排名
  • 172
    粉丝
关注
提问 私信

个人简介:无穷无尽的人工智能路上.

  • 加入CSDN时间: 2018-08-27
博客简介:

Mrzhang

博客描述:
程序本身不难,难的是没有耐心...
查看详细资料
  • 3
    领奖
    总分 446 当月 17
个人成就
  • 获得308次点赞
  • 内容获得139次评论
  • 获得854次收藏
创作历程
  • 1篇
    2021年
  • 3篇
    2020年
  • 10篇
    2019年
  • 65篇
    2018年
成就勋章
TA的专栏
  • 有趣的小项目
    9篇
  • Kaggle竞赛相关
  • 常用工具命令速查表
    8篇
  • TensorFlow相关
    15篇
  • PyTorch相关
    7篇
  • AI相关概念原理
    15篇
  • 算法与数据结构
    4篇
  • C/C++和Python混编
    2篇
  • 深度学习必学基础(Python版)
    18篇
  • 设计模式
  • 数据库
    2篇
  • 其它
  • 实用小技巧
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pycuda 踩坑传 Nvidia Jetson Nano 2GB

pycuda 踩坑传 Nvidia Jetson Nano 2GB从Nvidia官方下载LT4镜像烧录到SD开开机后开始安装pycuda环境换apt源修改文件:sudo vim /etc/apt/sources.list添加源:deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main multiverse restricted universedeb http://mirrors.tuna.tsinghua.edu.c
原创
发布博客 2021.10.22 ·
60 阅读 ·
0 点赞 ·
0 评论

制作一个属于自己的聊天机器人

github博客传送门这是一篇关于如何训练自己的基于知识库的聊天机器人项目.目标: 实现一个基于电影知识库的聊天机器人准备工作:结构化的电影知识库数据Neo4j 基础语法 CypherPython基础知识机器学习库 Sklearn高斯朴素贝叶斯原理一台电脑 + 足够的耐心实现过程可参考我的github实现过程: Chatbot项目代码可参考: Chatbot拆分思路可参考下图:效果图...
原创
发布博客 2020.12.06 ·
378 阅读 ·
0 点赞 ·
0 评论

手把手教你从零实现一片论文~

github博客传送门这是一篇关于从零实现一篇关于人脸检测论文的文章.目标: 从零实现一篇人脸检测论文MTCNN准备工作:原论文: Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural NetworksPython基础知识深度学习: 神经网络 DNN CNN知识本文使用框架: Pytorch (其它框架也可以)一台电脑 + 足够的耐心实现过程可参考我的github实现过程:
原创
发布博客 2020.12.06 ·
90 阅读 ·
0 点赞 ·
0 评论

如何让电脑学会自己玩游戏

如何让电脑学会自己玩游戏所用技术: 强化学习 -> Q_learning可以解决问题的示例:在计算机只知道它的动作只有上下左右和复制粘贴这六个动作的情况下 学会如何将上一行的文字复制到输出框走一维, 二维或三维迷宫, 或者在有陷阱,有奖励的情况下. 获得最大收益或减少成本.让计算机玩赌博游戏. 比如猜轮盘转出来的数字,猜对有奖励, 或者选择离开赌桌. 最长期的收益则是计算机选择离开赌桌.该技术可玩游戏类型的限制:可玩: 状态有限, 动作有限. (其中一个 精确的解.)不可玩:
原创
发布博客 2020.06.11 ·
713 阅读 ·
0 点赞 ·
0 评论

一文看懂深度学习模型的优化过程

github博客传送门博客园传送门本次分享的目的:希望还不太了解模型是什么的伙伴对模型有一个概念,并和我一起做一个超浓缩版本的例子.因为本次的目的是为了让大家了解模型是什么,因此有些地方是经过故意设置并修改(为了便于说明和减少本文章的篇幅设定).所以文章会有一些不严谨之处,还望大佬们见谅.请不要较真.转载请注明出处,CSDN博客 https://blog.csdn.net/zhangha...
原创
发布博客 2019.10.27 ·
2006 阅读 ·
4 点赞 ·
1 评论

pandas清洗数据实用代码

github博客传送门博客园传送门先创建一个可操作的DataFrame -> pandas的一种数据结构dic = {'name': {'a': "abc", 'b': "boc", 'c': "ccb", 'd': "icbc", 'e': "boc"}, 'data': {'a': "农业银行", 'b': "中国银行", 'c': "建设银行", 'd': "工商...
原创
发布博客 2019.07.10 ·
253 阅读 ·
3 点赞 ·
1 评论

save_model_test.tar.gz

发布资源 2019.06.26 ·
gz

使用Python+md5删除本地重复(同一张不重名)的照片

github博客传送门博客园传送门使用md5删除重复文件思路和本帖一样首先遍历需要去重文件夹下的所有文件然后生成每个文件md5码的同时 和集合中的md5码比较如md5码不存在,则进行保存.如存在,则不进行保存最后保存路径的文件 则是不重复的文件import hashlibimport osfrom PIL import Imageimport numpy as npfil...
原创
发布博客 2019.06.26 ·
703 阅读 ·
4 点赞 ·
0 评论

keras和tensorflow保存为可部署的pb格式

github博客传送门博客园传送门Keras保存为可部署的pb格式加载已训练好的.h5格式的keras模型传入如下定义好的export_savedmodel()方法内即可成功保存import kerasimport osimport tensorflow as tffrom tensorflow.python.util import compatfrom keras import...
原创
发布博客 2019.05.20 ·
3363 阅读 ·
6 点赞 ·
26 评论

Keras模型保存的几个方法和它们的区别

github博客传送门博客园传送门Keras模型保存简介model.save()model_save_path = "model_file_path.h5"# 保存模型model.save(model_save_path)# 删除当前已存在的模型del model# 加载模型from keras.models import load_modelmodel = load_mod...
原创
发布博客 2019.04.21 ·
1615 阅读 ·
11 点赞 ·
1 评论

NLP(文本分类思路)

github博客传送门博客园传送门加载词嵌入矩阵(一般情况为字典形式 {词0:300维的向量, 词1:300维的向量, 词2:300维的向量…})加载任务数据(一般情况为字符串形式 “我喜欢编程” 或者 “I love play computer”)对加载的所有任务数据求一个最大字符串长度 以便后面将所有数据填充至一样的长度将每条数据以每个样本的形式存入列表 [“我在家”, “他在打...
原创
发布博客 2019.03.19 ·
1067 阅读 ·
4 点赞 ·
0 评论

模型部署 TensorFlow Serving

github博客传送门csdn博客传送门博客园传送门整个部署的项目结构:└── keras-and-tensorflow-serving ├── README.md ├── my_image_classifier │ └── 1 │ ├── saved_model.pb # 导出的模型 │ └── variables  ...
原创
发布博客 2019.03.10 ·
1196 阅读 ·
3 点赞 ·
0 评论

Docker常用命令

github博客传送门博客园传送门常用命令命令用途docker pull获取imagedocker build创建imagedocker images列出imagedocker run运行containerdocker ps列出containerdocker rm删除containerdocker rmi删除image...
原创
发布博客 2019.02.26 ·
147 阅读 ·
3 点赞 ·
0 评论

R-CNN , Fast R-CNN , Faster R-CNN原理及区别

github博客传送门博客园传送门RCNN1、生成候选区域使用Selective Search(选择性搜索)方法对一张图像生成约2000-3000个候选区域,基本思路如下:(1)使用一种过分割手段,将图像分割成小区域(2)查看现有小区域,合并可能性最高的两个区域,重复直到整张图像合并成一个区域位置。优先合并以下区域:颜色(颜色直方图)相近的纹理(梯度直方图)相近的合并后总面积小...
原创
发布博客 2019.01.06 ·
1285 阅读 ·
4 点赞 ·
0 评论

经典网络结构(LeNet , AlexNet , VGG , GoogLeNet)剖析

github博客传送门csdn博客传送门博客园传送门参考: https://my.oschina.net/u/876354/blog/1797489LeNetC1层(卷积层):6@28×28(1)特征图大小 ->(32-5+1)×(32-5+1)= 28×28(2)参数个数 -> 5×5+1)×6= 156 其中5×5为卷积核参数,1为偏置参数(3)连接数 -&gt...
原创
发布博客 2019.01.06 ·
1286 阅读 ·
4 点赞 ·
0 评论

激活函数必要的属性

github博客传送门博客园传送门神经网络中激活函数的真正意义?一个激活函数需要具有哪些必要的属性?还有哪些属性是好的属性但不必要的?1. 非线性:即导数不是常数。这个条件是多层神经网络的基础,保证多层网络不退化成单层线性网络。这也是激活函数的意义所在。2. 几乎处处可微:可微性保证了在优化中梯度的可计算性。传统的激活函数如sigmoid等满足处处可微。对于分段线性函数比如ReLU,只...
原创
发布博客 2018.12.26 ·
2265 阅读 ·
6 点赞 ·
2 评论

什么样的数据集不适合用深度学习?

github博客传送门博客园传送门什么样的数据集不适合用深度学习?数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势。数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性。图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变。对于...
原创
发布博客 2018.12.26 ·
3276 阅读 ·
3 点赞 ·
2 评论

迁移学习的使用注意事项

github博客传送门博客园传送门什么是fine-tuning?在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。以下是常见的两类迁移学习场景:卷积网络当做特征提取器。使用在ImageNet上预训练的网络,去掉最后的全连接层,剩余部分当做...
原创
发布博客 2018.12.26 ·
837 阅读 ·
6 点赞 ·
0 评论

如何确定梯度爆炸和解决梯度爆炸

github博客传送门博客园传送门如何确定是否出现梯度爆炸?训练过程中出现梯度爆炸会伴随一些细微的信号,如:模型无法从训练数据中获得更新(如低损失)。模型不稳定,导致更新过程中的损失出现显著变化。训练过程中,模型损失变成 NaN。如果你发现这些问题,那么你需要仔细查看是否出现梯度爆炸问题。以下是一些稍微明显一点的信号,有助于确认是否出现梯度爆炸问题。训练过程中模型梯度快速变...
原创
发布博客 2018.12.23 ·
1538 阅读 ·
6 点赞 ·
0 评论

神经网络的调参效果不理想时->(解决思路)

github博客传送门博客园传送门非过拟合情况是否找到合适的损失函数?(不同问题适合不同的损失函数)(理解不同损失函数的适用场景)batch size是否合适?batch size太大 -> loss很快平稳,batch size太小 -> loss会震荡(理解mini-batch)是否选择了合适的激活函数?(各个激活函数的来源和差异)学习率,学习率小收敛慢,学习率大lo...
原创
发布博客 2018.12.23 ·
1706 阅读 ·
5 点赞 ·
0 评论
加载更多