在性能优化这个主题里,前面我们聊过了Tomcat的内存问题和网络相关的问题,接下来我们看一下CPU的问题,CPU资源经常会成为系统性能的一个瓶颈,这其中的原因是多方面的,可能是内存泄漏导致频繁GC,进而引起CPU使用率过高;又可能是代码中的bug创建了大量的线程,导致CPU上下文切换开销。
今天我们就来聊聊Tomcat进程的CPU使用率过高怎么办,以及怎样一步一步找到问题的根因。
“Java进程CPU使用率高”的解决思路是什么?
通常我们所说的CPU使用率过高,这里面其实隐含着一个用来比较高与低的基准值,比如JVM在峰值负载下的平均CPU利用率为40%,如果CPU使用率飙到80%就可以被认为是不正常的。
典型的JVM进程包含多个Java线程,其中一些在等待工作,另一些则正在执行任务。在单个Java程序的情况下,线程数可以非常低,而对于处理大量并发事务的互联网后台来说,线程数可能会比较高。
对于CPU的问题,最重要的是找到是哪些线程在消耗CPU,通过线程栈定位到问题代码;如果没有找到个别线程的CPU使用率特别高,,我们要怀疑是不是线程上下文切换导致了CPU使用率过高。下面我们通过一个实例来学习CPU问题定位的过程。
定位高CPU使用率的线程和代码
1.写一个模拟程序来模拟CPU使用率过高的问题,这个程序会在线程池中创建4096个线程,代码如下:
@SpringBootApplication
@EnableScheduling
public class DemoApplication {
//创建线程池,其中有4096个线程。
private ExecutorService executor = Executors.newFixedThreadPool(4096);
//全局变量,访问它需要加锁。
private int count;
//以固定的速率向线程池中加入任务
@Scheduled(fixedRate = 10)
public void lockContention() {
IntStream.range(0, 1000000)
.forEach(i -> executor.submit(this::incrementSync));
}
//具体任务,就是将count数加一
private synchronized void incrementSync() {
count = (count + 1) % 10000000;
}
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
}
}
2.在Linux环境下启动程序:
java -Xss256k -jar demo-0.0.1-SNAPSHOT.jar
3.使用top命令,我们看到Java进程的CPU使用率达到了262.3%,注意进程ID是4361.
4.接着我们用更精细化的top命令查看这个Java进程中各线程使用CPU的情况:
#top -H -p 4361
从图上我们可以看到,有个叫“scheduling-1”的线程占用了较多的 CPU,达到了 42.5%。因此下一步我们要找出这个线程在做什么事情。
5.为了找到线程在做什么事情,我们需要用jstack命令生成线程快照,具体方法是:
jstack 4361
jstack 的输出比较大,你可以将输出写入文件:
jstack 4361 > 4361.log
然后我们打开 4361.log,定位到第 4 步中找到的名为“scheduling-1”的线程,发现它的线程栈如下:
从线程栈中我们看到了AbstractExecutorService.submit这个函数调用,说明它是 Spring Boot 启动的周期性任务线程,向线程池中提交任务,这个线程消耗了大量 CPU。
进一步分析上下文切换开销
一般来说,通过上面的过程,我们就能定位到大量消耗 CPU 的线程以及有问题的代码,比如死循环。但是对于这个实例的问题,你是否发现这样一个情况:Java 进程占用的 CPU 是 262.3%, 而“scheduling-1”线程只占用了 42.5% 的 CPU,那还有将近 220% 的 CPU 被谁占用了呢?
不知道你注意到没有,我们在第 4 步用top -H -p 4361命令看到的线程列表中还有许多名为“pool-1-thread-x”的线程,它们单个的 CPU 使用率不高,但是似乎数量比较多。你可能已经猜到,这些就是线程池中干活的线程。那剩下的 220% 的 CPU 是不是被这些线程消耗了呢?
要弄清楚这个问题,我们还需要看 jstack 的输出结果,主要是看这些线程池中的线程是不是真的在干活,还是在“休息”呢?
通过上面的图我们发现这些“pool-1-thread-x”线程基本都处于 WAITING 的状态,那什么是 WAITING 状态呢?或者说 Java 线程都有哪些状态呢?你可以通过下面的图来理解一下:
从图上我们看到“Blocking”和“Waiting”是两个不同的状态,我们要注意它们的区别:
Blocking 指的是一个线程因为等待临界区的锁(Lock 或者 synchronized 关键字)而被阻塞的状态,请你注意的是处于这个状态的线程还没有拿到锁。
Waiting 指的是一个线程拿到了锁,但是需要等待其他线程执行某些操作。比如调用了 Object.wait、Thread.join 或者 LockSupport.park 方法时,进入 Waiting 状态。前提是这个线程已经拿到锁了,并且在进入 Waiting 状态前,操作系统层面会自动释放锁,当等待条件满足,外部调用了 Object.notify 或者 LockSupport.unpark 方法,线程会重新竞争锁,成功获得锁后才能进入到 Runnable 状态继续执行。
回到我们的“pool-1-thread-x”线程,这些线程都处在“Waiting”状态,从线程栈我们看到,这些线程“等待”在 getTask 方法调用上,线程尝试从线程池的队列中取任务,但是队列为空,所以通过 LockSupport.park 调用进到了“Waiting”状态。那“pool-1-thread-x”线程有多少个呢?通过下面这个命令来统计一下,结果是 4096,正好跟线程池中的线程数相等。
你可能好奇了,那剩下的 220% 的 CPU 到底被谁消耗了呢?分析到这里,我们应该怀疑 CPU 的上下文切换开销了,因为我们看到 Java 进程中的线程数比较多。下面我们通过 vmstat 命令来查看一下操作系统层面的线程上下文切换活动:
如果你还不太熟悉 vmstat,可以在这里(https://linux.die.net/man/8/vmstat)学习如何使用 vmstat 和查看结果。其中 cs 那一栏表示线程上下文切换次数,in 表示 CPU 中断次数,我们发现这两个数字非常高,基本证实了我们的猜测,线程上下文切切换消耗了大量 CPU。那么问题来了,具体是哪个进程导致的呢?
我们停止 Spring Boot 测试程序,再次运行 vmstat 命令,会看到 in 和 cs 都大幅下降了,这样就证实了引起线程上下文切换开销的 Java 进程正是 4361。