差分约束讲解,讨论不等式的最好方法是什么?


这篇文章之所以这么短是因为本人没做多少题QAQ。

例题

题目链接

【题意】
给定 n 个区间 [ai,bi]和 n 个整数 ci。
你需要构造一个整数集合 Z,使得∀i∈[1,n],Z 中满足ai≤x≤bi的整数 x 不少于 ci 个。
求这样的整数集合 Z 最少包含多少个数。 
【输入格式】
第一行包含整数 n。
接下来n行,每行包含三个整数ai,bi,ci。 
【输出格式】
输出一个整数表示结果。 
【数据范围】
1≤n≤50000,
0≤ai,bi≤50000,
1≤ci≤bi−ai+1
【输入样例】
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
【输出样例】
6 

题解

这道题目,我们设 s i s_{i} si 0 − i 0-i 0i的数字个数,那么很明显的事情就是 s b i − s a i − 1 > = c i s_{b_{i}}-s_{a_{i}-1}>=c_{i} sbisai1>=ci,但是 a i − 1 a_{i}-1 ai1可以小于零,那么我们就把 a , b a,b a,b都加 2 2 2,使得下标从 1 1 1起步。

那么这道题目就是求 s m a x ( b i ) s_{max(b_{i})} smax(bi)的最小数字,因为 s 1 = 0 s_{1}=0 s1=0,所以我们就是求 s n − s 1 s_{n}-s_{1} sns1(这种式子做法的理解方式在下个章节讲)的最小数字,当然这里还是采用 s m a x ( b i ) s_{max(b_{i})} smax(bi)的理解方式。

那么知道了这个又怎么样呢?

考虑一发SPFA,虽然毫无根据,但是就是觉得就是SPFA QMQ(其实如果看了下一个章节的不等式,你也许会更加理解为什么是SPFA了)。

我们设第 i i i个点的 d i s dis dis s i − s 0 s_{i}-s_{0} sis0的最小值,其实 s 0 = 0 s_{0}=0 s0=0,就是 s i s_{i} si的最小值。

但是在什么条件下迭代?

然后我们化一化式子: s a − s b > = c 1 , s a > = c 1 + s b s_a-s_b>=c_1,s_{a}>=c_1+s_{b} sasb>=c1,sa>=c1+sb,这个式子就特别像我们的SPFA最长路式子?就是吗,我们知道了 s b s_b sb的最小值,就可以去更新一下 s a s_a sa的最小值,当然是最长路了,不过建边方面我们还是需要建立一条由 a − > b a->b a>b的边,边权为 c 1 c_1 c1,不然在哪跑SPFA。

那么这道题目其实还有个隐藏条件,就是集合中每个数字最多只能有一个,那么我们又得到这样子的隐藏条件: 0 < = s i − s i − 1 < = 1 0<=s_{i}-s_{i-1}<=1 0<=sisi1<=1,把这两个不等式一化: s i > = 0 + s i − 1 , s i − 1 > = s i − 1 s_{i}>=0+s_{i-1},s_{i-1}>=s_{i}-1 si>=0+si1,si1>=si1,因为题目保证有解,跑一跑即可。

//最长路 
#include<cstdio>
#include<cstring>
#define  N  51000
#define  M  110000
using  namespace  std;
struct  node
{
	int  y,next,c;
}a[M];int  len,last[N];
inline  void  ins(int  x,int  y,int  c){len++;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;}
struct  wen
{
	int  l,r,c;
}tr[N];
int  m,n;
inline  int  mymax(int  x,int  y){return  x>y?x:y;}
int  list[N],head,tail,dis[N];
bool  v[N];
int  main()
{
	scanf("%d",&m);
	for(int  i=1;i<=m;i++)
	{
		int  l,r,c;scanf("%d%d%d",&l,&r,&c);
		l>r?l^=r^=l^=r:0;
		l++;r+=2;n=mymax(r,n);
		ins(l,r,c);
	}
	for(int  i=2;i<=n;i++)ins(i-1,i,0),ins(i,i-1,-1),dis[i]=-1;
	list[head=1]=1;tail=2;v[1]=1;
	while(head!=tail)
	{
		int  x=list[head++];if(head==n+1)head=1;v[x]=0;
		for(int  k=last[x];k;k=a[k].next)
		{
			int  y=a[k].y;
			if(dis[x]+a[k].c>dis[y])
			{
				dis[y]=dis[x]+a[k].c;
				if(!v[y])
				{
					v[y]=1;
					list[tail++]=y;if(tail==n+1)tail=1;
				}
			}
		}
	}
	printf("%d\n",dis[n]);
	return  0;
}

其余情况讨论

求a-b的最小or大值

我们其实这个还有个理解方式。

当我们无法确定 s 1 s_{1} s1等于多少的时候我们就只能直接把设不等式的最小or大值。

以下皆用最小值。(最大值其实就是<=不等式,然后最短路)
s 1 − s 1 = 0 s_1-s_1=0 s1s1=0
d i s i = s i − s 0 dis_{i}=s_i-s_0 disi=sis0
但是又如何理解边权为 c 1 c_{1} c1呢?
s a − s b < = c 1 s_{a}-s_{b}<=c_1 sasb<=c1
s b − s 0 < = d i s b s_{b}-s_{0}<=dis_{b} sbs0<=disb

那么两式相加: s a − s 0 < = c 1 + d i s b s_{a}-s_{0}<=c_{1}+dis_{b} sas0<=c1+disb,所以就是我们不敢设 s 1 = 0 s_{1}=0 s1=0我们也可以做这些题目。

无解情况

我们这里给出几个不等式: b − a > = 1 , c − b > = 1 , a − c > = 1 , d − b > = 1 b-a>=1,c-b>=1,a-c>=1,d-b>=1 ba>=1,cb>=1,ac>=1,db>=1,求 d − a d-a da的最大值,你乍一看,不是为 3 3 3吗,屁!

( b − a ) + ( c − b ) + ( a − c ) + ( b − a ) + ( c − b ) + ( a − c ) + ( d − b ) > = 7 (b-a)+(c-b)+(a-c)+(b-a)+(c-b)+(a-c)+(d-b)>=7 (ba)+(cb)+(ac)+(ba)+(cb)+(ac)+(db)>=7,你怎么说,而这个式子的最长路情况就是存在正环,所以就是等同于问最短路中是不是有负环。

这个问题我们需要深刻理解SPFA,才能够理解为什么能这么判断。

未加任何优化的SPFA有个特别优秀的地方,就是他使用纯BFS来实现,所以一条路径的点的个数如果小于另外一个路径的点的个数,那么他一定会被先找到。

而一个路径的长度最多是 n n n个点,不然说明有环,最短路有环,那么说明存在负环。

SPFA时间复杂度证明

很明显,一个点会被扔进队列里面最多 n n n次,即每个点都把他扔进去一次,然后有 n n n个点(其实也可以说他作为路径中第 i i i个点被加入队列,而 1 < = i < = n 1<=i<=n 1<=i<=n),然后有 n n n个点,且每个点会去找另外 n n n个点,那么时间复杂度为 O ( n 3 ) O(n^3) O(n3),可是不是说时间复杂度 O ( n m ) O(nm) O(nm)吗?

我们换个角度思考,每个路径中,第 i i i条边有 m m m个选择,路径长度最长为 n − 1 n-1 n1条边。那么就是 O ( n m ) O(nm) O(nm)

如何找负环

方案1

都说了正常情况一个点最多入队列 n n n次,那么只要一个点如队列次数超过 n n n次,那么存在负环,无解。

方案2

更快的方法就是设一个数组表示他在最短路径中是第几个点,如果超过 n n n,说明存在负环。

小结

  1. 差分约束的题目中一般都是设 s 1 = 0 s_{1}=0 s1=0,如这道题目,再者一些求 a − b a-b ab的最大值最小值一般也是设 b = 0 b=0 b=0,然后SPFA。
  2. 判断存不存在负环的话,DFS一般比BFS快。
  3. 找到题目中所有的约束条件,化成同一个符号的不等式。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值