项链(最小表示法)

博客探讨了如何解决一道与最小表示法相关的编程题目。首先介绍了最小表示法的基本思路,即通过确定最小字典序来判断字符串是否相同。然后讨论了暴力解法的局限性及其O(n^2)的时间复杂度,并提出了优化方案。博主还解答了两个问题,解释了为何选择min(i, j)以及k=n的情况意味着字符串由单一循环节组成。最后,博客中提供了相关代码实现。" 115898435,8017138,有限差分法入门与框架推导,"['数值分析', '微分方程', '有限差分', '计算科学']
摘要由CSDN通过智能技术生成

题目

题目

思路

看到这道题目我脑子里面第一个闪过的是KMP,但是看到第二问我就发现竟然是我不会的最小表示法。

首先明确一个思路,如果对于两个东西我们要确定是否相同,最好的方法就是确定一个最小的东西判断相等,例如在AcWing 156. 矩阵 中就是最小的浏览顺序,而这里则是最小的字典序,所以我们不难想到最小表示法。

什么?你说我总是讲的不好,我也没打算讲啊,这个算法OIwiki讲的挺好的,我就只做一些注释吧以及答疑吧。

首先,暴力是我们每次比较 i i i j j j开始的循环同构,把当前比较到的位置记作 ,每次遇到不一样的字符时便把大的跳过,最后剩下的就是最优解。

int k = 0, i = 0, j = 1;
while (k < n && i < n && j < n) {
   
  if (sec[(i + k) % n] == sec[(j + k) % n]) {
   
    ++k;
  } else {
   
    if (sec[(i + k) % n] > sec[(j + k) % n])
      ++i;
    else
      ++j;
    k = 0;
    if (i == j) i++;
  }
}
i = min(i, j);

但是这个很明显在 a a a a a . . . b aaaaa...b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值