各种友(e)善(xin)数论总集,从入门到绝望2---快速判断素数

因为原来的那篇已经很多了,所以在此写上第二篇。

这一章可以说是紧紧围绕的素数的主旨展开的。

前置芝士

快速乘

博主博主,平常 O ( 1 ) O(1) O(1)都已经如此之快,难道可以 O ( 0 ) O(0) O(0)

不不不,都一样,只不过算的是 x ∗ y % z x*y\%z xy%z,因为有时候 x ∗ y x*y xy溢出了long long,但是结果并没有,所以发明了快速乘。

O(1)

O ( 1 ) O(1) O(1)版的非常简单。 x ∗ y % z = x ∗ y − ( x ∗ y / z ) ∗ z x*y\%z=x*y-(x*y/z)*z xy%z=xy(xy/z)z(在C++环境下),但是这个有什么特殊的吗?

就是用溢出对待溢出,我们先用long double(16位)得出(x*y/z)(你在比赛的时候,可以先用 s i z e o f ( l o n g sizeof(long sizeof(long d o u b l e ) double) double)得出你电脑的long double是几位的,如果不是 16 16 16位的话,那评测机应该也是,为了稳妥还是用 l o g log log的吧)。

然后我们乘一下,两边可能会溢出,但是我们还是能减出正确的结果。

另外还有一坨精度问题,模数大的话还是少用吧。

inline  LL  ksc(LL  x,LL  y,LL  z)
{
	LL  c=(LD)x*y/z+0.5;
	LL  ans=x*y-c*z;
	return  ans<0?ans+z:ans;
}

O(log)

有没有什么稳得一批又好用的快速乘?

当然后,假设又有个 x , y , z x,y,z x,y,z

我们把 x x x拆成二进制: c n ∗ 2 n + c n − 1 ∗ 2 n − 1 + . . . . c_{n}*2^{n}+c_{n-1}*2^{n-1}+.... cn2n+cn12n1+....,而 c c c的取值只能为 0 , 1 0,1 0,1
然后 x ∗ y x*y xy在乘法分配率一下: y ∗ c 0 ∗ 2 0 + y ∗ c 1 ∗ 2 1 + . . . y*c_{0}*2^{0}+y*c_{1}*2^{1}+... yc020+yc121+...,那么我们只要边乘边模不就好起来了吗。

inline ll ksc(ll x,ll y,ll p){//计算x乘y的积
    ll res=0;//加法初始化
    while(y){
        if(y&1)res=(res+x)%p;//模仿二进制
        x=(x<<1)%p; y>>=1;//将x不断乘2达到二进制
    }return res;
}
// ll 表示 long long
//这里的代码用的是https://www.cnblogs.com/812-xiao-wen/p/10543023.html

floyd提出的判环法

判环

你以为是floyd,不是,是这样的,假设一个链表有环,怎么判环,我们这样想: y y y x x x两倍的速度奔跑,那么当 x , y x,y x,y相遇时, y y y刚好跑完几圈了,就退出。

找环

其实还有个扩展,如何找到环的起始位置。

我们设链表头走到环开始的地方步数为 m m m,从链表头走到相遇地点的步数是 m + k m+k m+k,然后环的长度为 n n n x , y x,y x,y分别走了 X , Y X,Y X,Y圈。

那么 S x = m + k + X n , S y = m + k + Y n S_{x}=m+k+Xn,S_{y}=m+k+Yn Sx=m+k+Xn,Sy=m+k+Yn,然后又因为 S y = 2 S x S_{y}=2S_{x} Sy=2Sx,所以 S x = ( Y − X ) n S_{x}=(Y-X)n Sx=(YX)n
也就是说两人走的距离肯定是 n n n的倍数。

然后我们再把 x x x提到了链表开始的地方,让两个人继续开始走,当走了 m m m步( x x x在环开始的地方),那么因为说了 S y = 2 S x = 2 ( Y − X ) n S_{y}=2S_{x}=2(Y-X)n Sy=2Sx=2(YX)n,也就是说 y y y走的步数应该是 n n n的倍数,也就是说当第一次相遇的时候,他应该离走完这个环到环开始的地方为 m m m,所以 y y y也到了环开始的地方,所以 x , y x,y x,y将会在环开始的地方相遇。

可惜这里不用。

生日悖论

首先我们来看看,现在我们来选数字,在1-100之间,如果我们选一个数字,那么是1的概率则是 1 100 \frac{1}{100} 1001,但是如果我们选两个数字,然后取差的绝对值,会怎样?我们选一个数字,然后选到他周围的两个数字的概率就变成了 1 50 \frac{1}{50} 501了!(忽略第一个数字 1 1 1 100 100 100的情况,那还是 1 100 \frac{1}{100} 1001),难道多元能增加概率!

没错,这就是生日悖论的内容。

生日悖论的重要思想是什么, 1 − x 1-x 1x的范围,如果有 x \sqrt{x} x 个数字的话,重复的概率就会高达 50 % 50\% 50%,恐不恐怖。

至于证明,在这里贴上大佬的证明。
在这里插入图片描述

Miller_rabin

相信在第一章里面,你们已经学会了费马小定律了,那就不讲了QMQ。

前言

我们都知道判断一个数字是不是素数,有一种方法就是试除法,直接从 2 2 2枚举到 p \sqrt{p} p ,但是有没有一种方法,能比 O ( p ) O(\sqrt{p}) O(p )还快有准确无误呢?

答案是并没有,但是如果你要求的是很大概率的话,打我可以告诉你的是,Miller_rabin就是这么一种算法,基本上准确无误,就连强伪素数都能跑过去,是什么呢?

二次探测

我们都知道,选取一个 p p p数字,然后用费马小定理判断一下,如果不是 1 1 1,那就不是素数,但是存在这么一种数字,能满足费马小定理但是不是素数的一类数字,我们又要怎么判断呢?

这里就要引入一个定理了,这个定理可以很大概率的判断是不是素数,加上费马小定理。

如果 p p p是质数且 a 2 ≡ 1 ( m o d    p ) ( a < p ) a^2≡1(\mod p)(a<p) a21(modp)(a<p),那么 a = 1 , p − 1 a=1,p-1 a=1,p1
我们可以来证明一下:
a 2 ≡ 1 ( m o d    p ) a^2≡1(\mod p) a21(modp)
a 2 − 1 ≡ ( m o d    p ) a^2-1≡(\mod p) a21(modp)
( a + 1 ) ( a − 1 ) ≡ 0 ( m o d    p ) (a+1)(a-1)≡0(\mod p) (a+1)(a1)0(modp)
那么,因为 a < p a<p a<p p p p是质数,所以 a = 1 , p − 1 a=1,p-1 a=1,p1

那么我们就可以把 p − 1 p-1 p1分成 2 t ∗ k 2^{t}*k 2tk,然后随机选取一个值 x x x,然后计算 x k x^{k} xk,然后继续不断取平方: x 2 i ∗ k x^{2^{i}*k} x2ik,然后不断的用二次探测来检测,更重要的是我们最后还可以用用费马小定理,当然, x x x我们可以手动取几个素数来多判几次,不知道为什么,素数成功概率大一点QMQ。

很明显是 l o g log log的。

代码

inline  LL  ksc(LL  x,LL  y,LL  z)
{
	LL  c=(LD)x*y/z+0.5;
	LL  ans=x*y-c*z;
	return  ans<0?ans+z:ans;
}
inline  LL  ksm(LL  x,LL  m,LL  mod)
{
	if(m==0)return  1%mod;
	LL  ans=1;
	while(m>1)
	{
		m&1?ans=ksc(ans,x,mod):0;
		x=ksc(x,x,mod);m>>=1;
	}
	return  ksc(ans,x,mod);
}
inline  int  log2(LL  &x)
{
	int  ans=0;
	while(x%2==0)ans++,x>>=1;
	return  ans;
}
int  su[]={2,3,5,7,11,23,29,61};
inline  bool  pd(LL  x)//判断一个素数 
{
	for(int  i=0;i<=7;i++)
	{
		if(x<=su[i])return  1;
		LL  y=x-1;int  tt=log2(y);
		y=ksm(su[i],y,x);
		while(tt--)
		{
			LL  z=ksc(y,y,x);
			if(z==1  &&  y!=1  &&  y!=x-1)return  0;
			y=z;
		}
		if(y!=1)return  0;
	}
	return  1;
}

Pollard-Rho

前言

你是否想快速的分解一个素数?

想吗?少年。

—来自SaDiao博主的一席话。

例题

都看到了,就是想咯QMQ。

例题

假设我们要分的数字是 p p p

构建随机数列

我们构建一个随机函数 x i = x i − 1 ∗ x i − 1 + C ( m o d    p ) x_{i}=x_{i-1}*x_{i-1}+C(\mod p) xi=xi1xi1+C(modp) C C C为我们自己定的常数),这么强?

同时 x 1 = 2 x_{1}=2 x1=2,我们发现这个序列每个都跟前面的数字有关,那么不就是类似链表了吗?而且因为是模了后序列,所以会有环(根据生日悖论,出现相同的数字概率是 O ( p ) O(\sqrt{p}) O(p )),就可以用 f l o y d floyd floyd判环法了。

我们再设一个函数: y i = x i − 1 ∗ x i − 1 + C ( m o d    q ) y_{i}=x_{i-1}*x_{i-1}+C(\mod q) yi=xi1xi1+C(modq) q q q p p p的一个质因数), y 1 = 2 y_{1}=2 y1=2,那么这个序列也会出现循环节的,我们再在两个循环节上找到两个位置 i , j i,j i,j,使得 i < j , l ( i ) = l ( j ) i<j,l(i)=l(j) i<j,l(i)=l(j),然后我们就会发现 ∣ x i − x j ∣ |x_{i}-x_{j}| xixj含有 q q q,也就是 g c d ( ∣ x i − x j ∣ , p ) ≠ 1 gcd(|x_{i}-x_{j}|,p)≠1 gcd(xixj,p)=1,那么我们就可以找到一个素数了。

但是我们并不知道 q q q,我们又怎么找到 i , j i,j i,j呢,我们会发现其实 i , j i,j i,j就是 y y y数列循环节上的对应位置,而上面也只是提供了一种可行性,也就是说我们可以用 f l o y d floyd floyd找环法来在 x x x数列中找,如果 g c d gcd gcd 1 1 1,那么继续找环,如果 g c d gcd gcd p p p(差为0就会这样),说明我们找到了模数为 q q q的环,可惜也是模数为 p p p的环,那么我们就退出,然后 C + + C++ C++,如果两个都不是,那么我们不就找到了一个质因数了吗?

再看看概率有多大,原本我们找两个数字的差找到质因数的概率应该比较小,但是如果我们是 g c d ≠ 1 gcd≠1 gcd=1的话,那概率不就大了吗?而且期望的循环节大小为 p \sqrt{p} p ,不就好起来了吗?

而且判断一个数字是不是素数就靠Miller_rabin了。

优(ka)化(chang)

我们要发现一个事情: x % z x\%z x%z,可以等同于 z ∗ ( ( x / g c d ( x , z ) ) % ( z / g c d ( x , z ) ) ) z*((x/gcd(x,z))\%(z/gcd(x,z))) z((x/gcd(x,z))%(z/gcd(x,z)))

那么这有什么用呢?我们可以把几个差乘起来,然后模一下(如果出现了质因子的话不会因为模了而消失掉,上面写了),至于乘几次,我选择的是 127 127 127,当然, p o w ( p , 0.1 ) pow(p,0.1) pow(p,0.1)也有人用,不要太大就可以了,我们后面则叫乘了 s t e p step step次。

那么我们也是乘完后GCD。

  1. 如果为 1 1 1继续。
  2. 如果为 n n n的话,说不定中间有质因子呢,我们也回到 s t e p step step次一起,不乘起来,一次次慢慢来。
  3. 如果两个都不是,恭喜,喜提质因子一枚。

然后自我感觉良好,优化了不少的常数。

注意事项

我们会发现,打完代码有事后还是会卡住的。

为什么,因为 4 4 4是个神奇的数字,我们可以把 C C C 1 1 1 4 4 4枚举一遍,会发现差统统不会涉及到 2 2 2,而其他 2 2 2的次方,比如 2 i 2^{i} 2i,在 C = 2 i − 4 C=2^{i}-4 C=2i4的时候,肯定跳一次就能得到结果, x = 0 , y = C x=0,y=C x=0,y=C,然后就可以把 2 2 2筛出来,为什么 4 4 4不行,因为 C = 0 C=0 C=0了,所以我们就只会一遍遍的得到 4 4 4然后重来。

那我们特判 4 4 4不就行了?不不不,特判要讲究艺术。

你想想,我们要是特判 % 2 = = 0 \%2==0 %2==0不是一样的吗,而且还造福了其他的数字,尤其是 2 2 2的次方,不加这个很有可能就老是到 2 i − 4 2^{i}-4 2i4才跳出来。

时间复杂度证明

一次的Pollard-Rho的复杂度是多少?(这道题目得用几次Pollard-Rho)

N = A ∗ B ( A < = B ) N=A*B(A<=B) N=AB(A<=B),那么 A < = ( N ) A<=\sqrt(N) A<=( N),我们是在 x x x A A A的循环节,期望复杂度为 O ( A ) O(\sqrt{A}) O(A ),那么不就是 O ( N 1 4 ) O(N^{\frac{1}{4}}) O(N41)吗?

但是其实不然,因为加上GCD什么乱起八糟的,正宗的应该是:
O ( N 1 4 l o g N s t e p + l o g N ) O(\frac{N^{\frac{1}{4}}logN}{step}+logN) O(stepN41logN+logN),但原本就是玄学算法你加这么多干嘛,而且在long long范围内我们的 s t e p step step肯定大于 l o g N logN logN,毕竟我们的 s t e p step step原本就是 127 127 127吗。

所以我们还是写 O ( N 1 4 ) O(N^{\frac{1}{4}}) O(N41),好看又好写。

代码

开了O2在luogu跑了600+ms,快的飞起,不开也有1.44s了,这不就快的飞起了吗。

可以试试这个跑不跑得出结果46856248255981。

强伪素数呀,都跑过去了。

#include<cstdio>
#include<cstring>
#include<cmath>
using  namespace  std;
typedef  long  double  LD;
typedef  long  long  LL;
inline  LL  zabs(LL  x){return  x<0?-x:x;}
inline  LL  mymin(LL  x,LL  y){return  x<y?x:y;}
inline  LL  mymax(LL  x,LL  y){return  x>y?x:y;}
inline  LL  ksc(LL  x,LL  y,LL  z)
{
	LL  c=(LD)x*y/z+0.5;
	LL  ans=x*y-c*z;
	return  ans<0?ans+z:ans;
}
inline  LL  ksm(LL  x,LL  m,LL  mod)
{
	if(m==0)return  1%mod;
	LL  ans=1;
	while(m>1)
	{
		m&1?ans=ksc(ans,x,mod):0;
		x=ksc(x,x,mod);m>>=1;
	}
	return  ksc(ans,x,mod);
}
inline  int  log2(LL  &x)
{
	int  ans=0;
	while(x%2==0)ans++,x>>=1;
	return  ans;
}
int  su[]={2,3,5,7,11,23,29,61};
inline  bool  pd(LL  x)//判断一个素数 
{
	for(int  i=0;i<=7;i++)
	{
		if(x<=su[i])return  1;
		LL  y=x-1;int  tt=log2(y);
		y=ksm(su[i],y,x);
		while(tt--)
		{
			LL  z=ksc(y,y,x);
			if(z==1  &&  y!=1  &&  y!=x-1)return  0;
			y=z;
		}
		if(y!=1)return  0;
	}
	return  1;
}
inline  LL  gcd(LL  x,LL  y)//实测二进制版GCD只比原来的快了20+ms,估计是因为优化减少了GCD的调用次数,凸显不出优势。
{
	int  ans=0;
	while(x  &&  y)
	{
		if(x&1  &&  y&1)
		{
			y>x?x^=y^=x^=y:0;
			x=(x-y)>>1;
		}
		else  if(x&1)y>>=1;
		else  if(y&1)x>>=1;
		else  x>>=1,y>>=1,ans++;
	}
	return  (x+y)<<ans;
}
inline  LL  Pol(LL  now,LL  step,LL  add)
{
	if(now%2==0)return  2;//防止毒瘤的4的情况 
	LL  x=2,y=2,d=1;
	while(1)
	{
		LL  tx=x,ty=y;
		for(int  i=1;i<=step;i++)
		{
			x=ksc(x,x,now)+add;x>=now?x-=now:0;
			y=ksc(y,y,now)+add;y>=now?y-=now:0;
			y=ksc(y,y,now)+add;y>=now?y-=now:0;
			d=ksc(d,zabs(x-y),now);
		}
		d=gcd(d,now);
		if(d==1)continue;
		else  if(d!=now)return  d;
		x=tx;y=ty;
		for(int  i=1;i<=step;i++)
		{
			x=ksc(x,x,now)+add;x>=now?x-=now:0;
			y=ksc(y,y,now)+add;y>=now?y-=now:0;
			y=ksc(y,y,now)+add;y>=now?y-=now:0;
			d=gcd(zabs(x-y),now);
			if(d!=1)return  d%now;
		}
	}
}
inline  LL  work(LL  n)
{
	if(pd(n)  ||  n==1)return  n;
	LL  tmp=0,step=127/*玄学步数*/,add=1;
	while(!tmp)tmp=Pol(n,step,add++);
    //
	if(n/tmp<tmp)tmp=n/tmp;//使得n/tmp>=tmp
	LL  ans=work(n/tmp);
	if(ans>=tmp)return  ans;
	return  mymax(ans,work(tmp));
    //实现上的一个优化,优化空间小,但是能优化,而且不会耗多少空间,基本正优化
}
LL  n;
int  main()
{
	int  T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lld",&n);
		LL  ans=work(n);
		if(ans==n)printf("Prime\n");
		else  printf("%lld\n",ans);
	} 
	return  0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值