- 博客(5)
- 收藏
- 关注
原创 机器学习——bp神经网络
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。激活函数的引入为的是增加整个网络的表达能力 (即非线性),否则,若干线性操作层的堆叠仍然只能起到线性映射的作用,无法形成复杂的函数。
2023-08-10 17:29:44 3588 1
原创 逻辑回归实现手写字识别
对于手写数字分类问题,转换为 one-hot 编码后,数字 0 可以表示为 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],数字 1 可以表示为 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],以此类推。mnist数据集中都是28*28像素的灰度图像,像素取值在0-255之间,图上是手写的0-9的数字,每一幅图都有一个标签,表示对应的数字。利用numpy库里的genfromtxt()函数对数据集进行读取,文件为csv文件,并以“,”隔开,X为特征向量,取除第一列后的数;
2023-08-02 21:42:42 397
原创 机器学习—逻辑回归
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,通常用于二分类。其名字中带有回归,自然是与回归有着一定的联系。由于算法的简单和高效,在实际中应用非常广泛。通俗来说,逻辑回归就是加入线性回归的sigmoid函数。与回归模型不同的是,回归模型的输出是联系的,而分类模型的输出是离散的。
2023-07-17 19:40:27 316
原创 KNN算法分析及实现
K近邻分类算法,简称KNN算法(KNN,K-NearestNeighbor),所谓的K近邻就是K个距离最近的邻居,表示每个样本都可以用它最接近的K个邻近值来代表。是数据挖掘中最简单的分类方法之一。
2023-07-12 15:47:49 317
原创 机器学习——梯度下降及线性回归
线性回归(Linear Regression)是一种用于建立连续变量之间线性关系的统计模型。它假设目标变量与自变量之间存在线性关系,并试图通过拟合一条最佳的直线或超平面来预测目标变量的值。梯度下降是迭代法的一种,在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降是最常采用的方法之一。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。
2023-07-06 00:26:23 1079 2
顾客购物数据.CSV(3900条记录)
2024-07-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人