动态规划法解0-1背包问题

背包问题

0-1背包: 有N件物品和一个重量为M的背包。(每种物品均只有一件)第i件物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包: 有N种物品和一个重量为M的背包,每种物品都有无限件可用。第i种物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

多重背包: 有N种物品和一个重量为M的背包。第i种物品最多有n[i]件可用,每件重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

0-1背包是最基础的背包问题,特点是:每种物品仅有一件,可以选择不放(0)或者放(1)。

用子问题定义状态:即F[i][j]表示前i件物品恰放入一个承重量(也可以是体积)为j (j的取值范围为0-M | M为背包最大承重量)的背包可以获得的最大价值。则其状态转移方程便是:


其中F[i-1][j]表示前i-1件物品放入剩余承重量为j的背包中所能得到的最大价值;

而F[i-1][j-C[i]]+W[i]表示前i-1件物品放入剩余承重量为j-C[i]的背包中所能取得的最大价值加上第i件物品的价值。

设物品件数为n,背包承重量为C,第i件物品重量为W[i],第i件物品价值为v[i]。

int KnapSack(int n,int w[],int v[],int x[],int C)
{
    int i,j;
    for(i=0;i<=n;i++)
        V[i][0]=0;
    for(j=0;j<=C;j++)
        V[0][j]=0;
    for(i=1;i<=n;i++)
        for(j=1;j<=C;j++)
            if(j<w[i])
                V[i][j]=V[i-1][j];
            else
                V[i][j]=max(V[i-1][j],V[i-1][j-w[i]]+v[i]);
    j=C;
    for(i=n-1;i>=0;i--)
    {
        if(V[i][j]>V[i-1][j])
        {
        	x[i]=1;
        	j=j-w[i];
        }
	    else
	        x[i]=0;
	    }
    printf("选中的物品是:\n");
    for(i=0;i<n;i++)
        printf("%d ",x[i]);
    printf("\n");
    return V[n-1][C];
}

上述算法空间复杂度为O(NC),观察代码发现,在求二给数组V时,i时的状态只和i-1时有关。所以可以用一个一维数组来进行辗转利用,核心代码如下,要注意的是空间j的取值要从大到小,否则在求i状态值时,i-1时状态值会被覆盖。

for(int i = 0; i < n; i++)  
{
   for(int j = C; j >= W[i]; j--)  
     {
         if(Table[j] < Table[j-W[i]]+V[i])  
         { 
             Table[j] = Table[j-W[i]]+V[i];
         }  
     }     
 } 




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值