卷积网络

1最终目标
图卷积是卷积网络在图上的扩展,变得更加复杂,不过其中还是涉及到了卷积思想, 因此本处主要是基本说明了一些卷积网络的相关知识点。
2卷积
卷积就是记住一个字, 滑窗。
实时卷积与离线卷积。首先看下实时卷积。
在这里插入图片描述

离线卷积
在这里插入图片描述

可以看到卷积的奥义实际上就是固定一个函数不动, 将另一个函数先翻转然后开始滑窗。
上面离线卷积我们看到了一维情况下的过程, 如果是2维矩阵呢?下面给出矩阵的例子。
在这里插入图片描述

上面我们推导计算了二维矩阵的卷积过程, 那如果是三维呢?其过程如下图所示。
在这里插入图片描述

多通道的卷积核:
假设我们有32323的矩阵 此时的3代表的是RGB色素, 根据上面的卷积核5 * 5 *3转成了单通道的28 * 28 *1的矩阵, 那么如果我经过的不是1个卷积核 而是6个卷积核呢, 也就是经过6个5 * 5 *3的卷积核呢, 那么结果将会如下:
在这里插入图片描述

3卷积神经网络
全连接神经网络的问题: 1, 参数过多, 容易过拟合, 而且易产生参数爆炸。
2, 算力问题。
最终导致整个网络没法过深。
如何解决: 1, 卷积核降维 (上面就解释了)
2, 权值共享
3, 池化(Pooling) 持续降维(最大值池化,平均值池化)
卷积神经网络持有的思想:
认为特征只跟最近的特征有关系, 比如当前信号可能只受最近几次信号的影响, 与最开始的信号可能关系不大, 此时全连接网络进行训练得到的开始的特征的权值就会非常小,显得毫无意义。因此产生了卷积神经网络,以当前特征只跟周围附近分润特征具有关联, 因此而降维。使得神经网络可以更深。
卷积神经网络的构成:
1, 卷积层(引入卷积核)
2,池化层(持续降维度)
3,全连接层(此时维度已经很低)
卷积核
类似上面的介绍
池化
为啥要用池化层:针对图像场景, 这层利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息,相当于图像压缩。
比如最大值池化, 滑窗步长为2,则结果如下。
在这里插入图片描述

可以看到最大值池化是求最大值, 同理可以知道平均值池化也就是求取均值。不再赘述。
网络:
使用的是反向传播推导的逻辑思路。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值