Spark源码分析之Executor分析

Executor是在worker启动的一个进程,用于执行task任务。我们知道CoarseGrainedSchedulerBackend在启动之后,会创建Driver终端,然后会立即向Driver发送RegisterExecutor消息,注册成功之后,会向CoarseGrainedSchedulerBackend返回一个RegisteredExecutor消息

然后会创建一个Executor对象;然后接下来Driver内的DAGScheduler

向CoarseGrainedSchedulerBackend发送LaunchTask消息,然后这个SchedulerBackend实际上调用executor来发起任务,创建TaskRunner来执行task

 

一 核心属性

String executorHostname: executor对应的hostname

Boolean isLocal:是否是本地的

ThreadPoolExecutor threadPool:线程池

boolean userClassPathFirst: 是否首先加载用户jar中的class

MutableURLClassLoader urlClassLoader: URL类加载器

Long maxDirectResultSize: 直接结果最大为多大,首先从spark.task.maxDirectResultSize获取,如果没有设置则,默认是1M,还需要和rpc的message所允许的最大字节数比较,看谁比较小

Long maxResultSize:最大结果限制,默认是1GB

ConcurrentHashMap runningTasks: 正在运行的task列表

ScheduledExecutorService heartbeater: 心跳线程

HEARTBEAT_MAX_FAILURES :心跳检测失败默认值60

 

二 重要方法

2.1 launchTask

deflaunchTask(context:ExecutorBackend, taskId: Long, attemptNumber: Int,
    taskName: String,serializedTask: ByteBuffer): Unit = {
  // 创建TaskRunner对象
 
val tr= new TaskRunner(context,taskId = taskId,attemptNumber = attemptNumber, taskName,
    serializedTask)
  // <task id, task runner> 放入内存缓存中
 
runningTasks
.put(taskId,tr)
  // 调用TaskRunnerrun方法
 
threadPool
.execute(tr)
}

 

2.2 killTask

def killTask(taskId: Long, interruptThread: Boolean): Unit = {
  // 获取task 对应的 TaskRunner
  val tr = runningTasks.get(taskId)
  // 调用kill方法kill task
  if (tr != null) {
    tr.kill(interruptThread)
  }
}

 

2.3 TaskRunner的run方法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫言静好、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值