一HashShuffle写数据的机制
1.1HashWriter#write
# 判断map端是否需要聚合,比如<a,1>和<a,1>都要写入的话,那么先生成<a,2>然后再进行后续的写入工作判断map端是否允许进行combine操作,如果允许则进行combine操作,否则直接返回records
# 遍历记录,并且对数据进行partitioner操作,进行分区,获得一个分区号bucketIds,根据bucketId取得ShuffleWriterGroup里的对应的writer将数据写入文件
# 通过ShuffleWriterGroup将数据<key,value>写入
override defwrite(records:Iterator[Product2[K,V]]): Unit = {
// 判断map端是否需要聚合,比如<a,1>和<a,1>都要写入的话,那么先生成<a,2>然后再进行后续的写入工作
val iter= if (dep.aggregator.isDefined) {
// 判断map端是否允许进行combine操作,如果允许则进行combine操作,否则直接返回records
if (dep.mapSideCombine) {
dep.aggregator.get.combineValuesByKey(records,context)
} else {
records
}
} else {
require(!dep.mapSideCombine,"Map-side combine withoutAggregator specified!")
records
}
// 遍历记录,并且对数据进行partitioner操作,进行分区,获得一个分区号bucketIds
// 根据bucketId取得ShuffleWriterGroup里的对应的writer将数据写入文件
for (elem <- iter) {
val bucketId = dep.partitioner.getPartition(elem._1)
// 通过ShuffleWriterGroup将数据<key,value>写入
shuffle.writers(bucketId).write(elem._1, elem._2)
}
}
1.2 FileShuffleBlockResolver#forMapTask
FileShuffleBlockResolver主要用于管理block的writer,每一个Reducer任务对应着一个文件。
forMapTask:对于指定的map task获取一个ShuffleWriterGroup,里面一个reducer对应着一个writer
def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer,
writeMetrics: ShuffleWriteMetrics): ShuffleWriterGroup = {
new ShuffleWriterGroup {
shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets))
private val shuffleState = shuffleStates(shuffleId)
private var fileGroup: ShuffleFileGroup = null
val openStartTime = System.nanoTime
val serializerInstance = serializer.newInstance()
// 如果启动了consolidation机制,spark.shuffle.consolidateFiles置为true
val writers: Array[DiskBlockObjectWriter] = if (consolidateShuffleFiles) {
// 获取那些还没有使用的文件组
fileGroup = getUnusedFileGroup()
// 返回reducer个数的DiskBlockObjectWriter对象,比如reducer个数为10则返回10个,每一个reducer对应着
// 每一个ShuffleMapTask里的一个bucketId.即对于每一个bucket,都会获取一个针对ShuffleFileGroup的
// writer,而不是一个独立的ShuffleBlockFile,这样就实现多个MapTask输出数据的合并
Array.tabulate[DiskBlockObjectWriter](numBuckets) { bucketId =>
val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializerInstance, bufferSize,
writeMetrics)
}
} else {//没有开启consolidation机制
// 返回reducer个数的DiskBlockObjectWriter对象
Array.tabulate[DiskBlockObjectWriter](numBuckets) { bucketId =>
// 创建blockId
val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
// 根据blockId获取Block File
val blockFile = blockManager.diskBlockManager.getFile(blockId)
// 如果该文件已经存在,则删除,因为可能以前失败的task,已经创建过了
if (blockFile.exists) {
if (blockFile.delete()) {
logInfo(s"Removed existing shuffle file $blockFile")
} else {
logWarning(s"Failed to remove existing shuffle file $blockFile")
}
}
// 针对每一个blockFile都会生成一个writer
blockManager.getDiskWriter(blockId, blockFile, serializerInstance, bufferSize,
writeMetrics)
}
}
writeMetrics.incShuffleWriteTime(System.nanoTime - openStartTime)
// 释放writers
override def releaseWriters(success: Boolean) {
// 如果开启了consolidation机制,则如果成功的话,则记录FileSegment的offset和length
if (consolidateShuffleFiles) {
if (success) {
val offsets = writers.map(_.fileSegment().offset)
val lengths = writers.map(_.fileSegment().length)
fileGroup.recordMapOutput(mapId, offsets, lengths)
}
// 回收文件组
recycleFileGroup(fileGroup)
} else {
// 如果没有开启consolidation机制,则直接将完成的map 任务的id放入completedMapTasks
shuffleState.completedMapTasks.add(mapId)
}
}
// 获取未使用的文件组
private def getUnusedFileGroup(): ShuffleFileGroup = {
val fileGroup = shuffleState.unusedFileGroups.poll()
if (fileGroup != null) fileGroup else newFileGroup()
}
// 产生一个新的文件组
private def newFileGroup(): ShuffleFileGroup = {
val fileId = shuffleState.nextFileId.getAndIncrement()
val files = Array.tabulate[File](numBuckets) { bucketId =>
val filename = physicalFileName(shuffleId, bucketId, fileId)
blockManager.diskBlockManager.getFile(filename)
}
val fileGroup = new ShuffleFileGroup(shuffleId, fileId, files)
shuffleState.allFileGroups.add(fileGroup)
fileGroup
}
// 回收文件组
private def recycleFileGroup(group: ShuffleFileGroup) {
shuffleState.unusedFileGroups.add(group)
}
}
}
二HashShuffle读数据机制
当ResultTask或者ShuffleMapTask在执行到ShuffledRDD的时候,肯定会调用compute的时候进行计算,就会通过ShuffleReader读取数据
2.1HashShuffleReader#read
# 创建ShuffleBlockFetcherIterator,去拉取数据
# 对读取到到的数据进行流处理
# 对读取的数据进行聚合处理
# 对基于排序的shuffle机制,处理分区数据的二次排序
在基于排序的shuffle实现过程中,默认仅仅是基于Partitionid进行排序在分区的内部数据是没有排序的,因此添加了keyOrdering变量,提供是否需要针对分区内部的数据进行排序
为了减少内存的压力,避免GC开销,引入了外部排序器对数据进行排序;当内存不足以容纳排序的数据量时,会根据配置的spark.shuffle.spill属性来决定是否需要spill到磁盘,默认情况下是打开的,如果不打开,在数据量比较大的时候会引发内存溢出问题
override def read(): Iterator[Product2[K, C]] = {
// 创建ShuffleBlockFetcherIterator
val blockFetcherItr = new ShuffleBlockFetcherIterator(
context,
blockManager.shuffleClient,
blockManager,
mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition),
// 最多允许理请求总字节数默认是48M
SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024)
// 对读取到到的数据进行流处理
val wrappedStreams = blockFetcherItr.map { case (blockId, inputStream) =>
blockManager.wrapForCompression(blockId, inputStream)
}
val ser = Serializer.getSerializer(dep.serializer)
val serializerInstance = ser.newInstance()
val recordIter = wrappedStreams.flatMap { wrappedStream =>
serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator
}
val readMetrics = context.taskMetrics.createShuffleReadMetricsForDependency()
val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]](
recordIter.map(record => {
readMetrics.incRecordsRead(1)
record
}),
context.taskMetrics().updateShuffleReadMetrics())
// An interruptible iterator must be used here in order to support task cancellation
val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter)
// 对读取的数据进行聚合处理
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
// 如果要求combine,则进行combine,如果map端已经做了聚合处理,那么这个地方对读取到的聚合结果进行处理
if (dep.mapSideCombine) {
// 针对各个map端各分区对key进行合并的结果再次聚合,map的合并可以大大减少网络传输的数据量
val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
} else {
// 针对未合并的key-value的值进行合并
val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
}
} else {
require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
}
// 在基于排序的shuffle实现过程中,默认仅仅是基于Partitionid进行排序
// 在分区的内部数据是没有排序的,因此添加了keyOrdering变量,提供是否需要
// 针对分区内部的数据进行排序
dep.keyOrdering match {
/*
* 为了减少内存的压力,避免GC开销,引入了外部排序器对数据进行排序;当内存不足以容纳排序
* 的数据量时,会根据配置的spark.shuffle.spill属性来决定是否需要spill到磁盘,默认情况下
* 是打开的,如果不打开,在数据量比较大的时候会引发内存溢出问题
*/
case Some(keyOrd: Ordering[K]) =>
val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser))
sorter.insertAll(aggregatedIter)
context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
context.internalMetricsToAccumulators(
InternalAccumulator.PEAK_EXECUTION_MEMORY).add(sorter.peakMemoryUsedBytes)
sorter.iterator
// 不需要排序的时候直接返回
case None =>
aggregatedIter
}
}
2.2ShuffleBlockFetcherIterator# initialize
ShuffleBlockFetcherIterator:从多个block上拉取数据
# 划分本地和远端block,确定数据读取策略,返回需要在远端拉取block的请求集合
# 添加远端请求到队列
# 向block发送远端请求,直到达到阀值
# 开始从本地block拉取数据
private[this] def initialize(): Unit = {
// 添加一个任务完成的回到函数用于清理工作
context.addTaskCompletionListener(_ => cleanup())
// 划分本地和远端block,确定数据读取策略,返回需要在远端拉取block的请求集合
val remoteRequests = splitLocalRemoteBlocks()
// 添加远端请求到队列
fetchRequests ++= Utils.randomize(remoteRequests)
// Send out initial requests for blocks, up to our maxBytesInFlight
// 向block发送远端请求,直到达到阀值
while (fetchRequests.nonEmpty &&
(bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight)) {
sendRequest(fetchRequests.dequeue())
}
val numFetches = remoteRequests.size - fetchRequests.size
logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))
// 开始从本地block拉取数据
fetchLocalBlocks()
logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime))
}
2.3splitLocalRemoteBlocks
划分本地和远端block,确定数据读取策略,返回需要在远端拉取block的请求集合
private[this] def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
// 远端请求从最多5个node去获取数据,每一个节点拉取的数据取决于spark.reducer.maxMbInFlight即maxBytesInFlight参数
// 加入整个集群只允许每次在5台拉取5G的数据,那么每一节点只允许拉取1G数据,这样就可以允许他们并行从5个节点获取,
// 而不是主动从一个节点获取
val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
logDebug("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize)
// 创建FetchRequest队列,用于存放拉取的数据的请求,每一个请求可能包含多个block,
// 具体多少取决于总的请求block大小是否超过目标阀值
val remoteRequests = new ArrayBuffer[FetchRequest]
// Tracks total number of blocks (including zero sized blocks)
var totalBlocks = 0
for ((address, blockInfos) <- blocksByAddress) {
// 获取block的大小,并更新总的block数量信息
totalBlocks += blockInfos.size
// 要获取的数据在本地
if (address.executorId == blockManager.blockManagerId.executorId) {
// 更新要从本地block拉取的集合
localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)
// 更新要拉取的block数量
numBlocksToFetch += localBlocks.size
} else {//数据不在本地时
val iterator = blockInfos.iterator
var curRequestSize = 0L // 当前请求的大小
// 存放当前的远端请求
var curBlocks = new ArrayBuffer[(BlockId, Long)]
// 遍历每一个block
while (iterator.hasNext) {
val (blockId, size) = iterator.next()
// 过滤掉空的block
if (size > 0) {
curBlocks += ((blockId, size))
// 更新要拉取的远端的blockId的集合列表
remoteBlocks += blockId
// 更新要拉取的block数量
numBlocksToFetch += 1
curRequestSize += size
} else if (size < 0) {
throw new BlockException(blockId, "Negative block size " + size)
}
// 如果当前请求的大小已经超过了阀值
if (curRequestSize >= targetRequestSize) {
// 创建一个新的FetchRequest,放到请求队列
remoteRequests += new FetchRequest(address, curBlocks)
// 清空当前block列表
curBlocks = new ArrayBuffer[(BlockId, Long)]
logDebug(s"Creating fetch request of $curRequestSize at $address")
// 重置当前请求数量为0
curRequestSize = 0
}
}
// 最后添加请求到请求队列
if (curBlocks.nonEmpty) {
remoteRequests += new FetchRequest(address, curBlocks)
}
}
}
logInfo(s"Getting $numBlocksToFetch non-empty blocks out of $totalBlocks blocks")
remoteRequests
}
2.4sendRequest:发送远端fetch请求
private[this] def sendRequest(req: FetchRequest) {
logDebug("Sending request for %d blocks (%s) from %s".format(
req.blocks.size, Utils.bytesToString(req.size), req.address.hostPort))
// 更新正在处理的请求的数量
bytesInFlight += req.size
// 将(blockId, size)转换成map
val sizeMap = req.blocks.map { case (blockId, size) => (blockId.toString, size) }.toMap
// 获取每一个请求的block列表的blockId
val blockIds = req.blocks.map(_._1.toString)
// 请求的远端的地址
val address = req.address
// 调用ShuffleClient从远程获取数据
shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
new BlockFetchingListener {
override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = {
if (!isZombie) {
// Increment the ref count because we need to pass this to a different thread.
// This needs to be released after use.
buf.retain()
results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf))
shuffleMetrics.incRemoteBytesRead(buf.size)
shuffleMetrics.incRemoteBlocksFetched(1)
}
logTrace("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime))
}
override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = {
logError(s"Failed to get block(s) from ${req.address.host}:${req.address.port}", e)
results.put(new FailureFetchResult(BlockId(blockId), address, e))
}
}
)
}
2.5 fetchLocalBlocks:从本地fetch数据
private[this] def fetchLocalBlocks() {
val iter = localBlocks.iterator
// 开始遍历本地的block
while (iter.hasNext) {
val blockId = iter.next()
try {
// 获取本地block数据
val buf = blockManager.getBlockData(blockId)
shuffleMetrics.incLocalBlocksFetched(1)
shuffleMetrics.incLocalBytesRead(buf.size)
buf.retain()
// 将结果放入results
results.put(new SuccessFetchResult(blockId, blockManager.blockManagerId, 0, buf))
} catch {
case e: Exception =>
// If we see an exception, stop immediately.
logError(s"Error occurred while fetching local blocks", e)
results.put(new FailureFetchResult(blockId, blockManager.blockManagerId, e))
return
}
}
}