维度建模之维度表的设计经验分享

本文分享了维度建模中的数据接入(离线与实时)与维度表设计经验。强调了维度表的一致性、主数据源选择、结构设计以及保证主键唯一性的重要性。建议维度表设计时考虑业务需求,选择星型或雪花结构,并提供相关参考书籍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

  1. 维度建模之数据接入经验分享
    其一离线数据接入:Sqoop数据接入的经验分享和思考
    其二实时数据接入:待更新
  2. 维度建模之事实表的设计经验分享
  3. 维度建模之维度表的设计经验分享
  4. 维度建模之汇总分析表的设计经验分享
  5. 维度建模之应用层报表的设计经验分享


前言

了解数据库的小伙伴应该都知道,数据库表的设计需要遵循范式,这主要是为了让表更加规范,减少冗余。而目前主流的数据仓库表设计方式是维度建模,为了让表使用起来更方便,通常情况下会主动引入冗余。这是数据库和数据仓库的不同之处。
本文主要分享我在数仓开发过程中维度表的设计经验,供大家参考,如有不正确之处,请评论指正,我们共同进步。


一、维度表的概念

维度是维度建模的基础和灵魂。在维度建模中,将度量称为“事实”,将环境描述为“维度”,维度是用于分析事实所需要的多样环境。例如,在分析交易过程中,可以通过买家、卖家、商品和时间等维度描述交易发生的环境。

二、维度表的设计

(一)公司内部统一维度来源及口径

维度的口径必须保证唯一,如果公司不同部门对同一产品的分类有不同口径,最后统计的结果肯定无法统一。

(二)确认维度表的主数据源表

比如产品信息维度表,应该以数据库中产品表为主数据源表,再关联产品分类等。

(三)根据需要考虑设计成星型结构或雪花结构

如果该维度经常被使用,建议维度关联冗余,让事实表可以直接获取多个维度形成星型模型,如果维度只被少量模型使用,可以考虑雪花模型。

(四)保证维度表主键唯一

必须保证维度表每行数据的唯一性,避免关联时出现一对多。

三、参考书籍

  1. 《数据仓库工具箱(第3版)——维度建模权威指南》【美】Ralph Kimball & Margy Ross 著
  2. 《大数据之路——阿里巴巴大数据实践》阿里巴巴数据技术及产品部 著
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张六十zhangliushi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值