(1)一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
(2)一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个 人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可 是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?
(3)三个小伙子同时爱上了一 个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失 误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个 人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
(4)话说有十二个鸡蛋,有一个是坏的(重量与其余鸡蛋不同),现要求用天平称三次,称出哪个鸡蛋是坏的!
(1)答:正整数中包含0,第一轮可以推测出三个数两两不相等,进入第二轮时三个人都知道这一点。第二轮中前两个人说的“不能”表明三个数中不存在一个数是另外一个数的二倍,否则前两个人一定可以知道自己的数字就是互为二倍的两个数字的加和,而且如果第一个人和第二个人的数字是二倍关系的话,那么第三个人在第一轮中就可以猜出他头上的数字。那么第二轮中第三个人成功猜出了数字144,问题是让我们猜出另外两个数字。姑且不考虑为什么是144,也就是思考的前提是x+y=z或者x-y=z,假设x为第一个数,y为第二个,z为第三个数。对第三个人来说,他猜的时候也面临这两个选择,能猜出144一定通过某个条件排除了其中一种可能,这个条件的特征是第二轮中存在而第一轮中不存在的,否则第三个人在第一轮中就可以猜的出来,那么这个被违反的条件就是“三个数中不存在一个数是另外一个数的二倍”。如果假设x-y=z,那么排除的就是x+y=z(x+y=z违反且只违反“三个数中不存在一个数是另外一个数的二倍”),又第三个人知道x和y已经确定不是二倍关系了,那么只可能x+y=2y但是这样会推出x=y,违反了另外一个条件,因此假设“排除的是x+y=z”错误,那么就是排除的是x-y=z,即x-y=2y,而且x+y=z成立,z=144,解得x=108,y=36。
(2)答:思路是这样,肯定是让某些人来分汤,某些人来去烫,最后一个取汤的人应该让他第一个分汤,倒数第二个取汤的人第二个分汤,第一个取汤的人不能最后一个分汤,因为他会把所有汤占为己有,这样,先让甲来分汤分成三份,乙那分好的两份汤分成两份,然后按丙,乙,甲的次序拿汤。乙不想让丙拿到多的汤,所以乙会拿最多的和次多的来分,这样使得甲拿到的汤最少,不公平,因此规定乙只能分最多的和最少的两份汤。
(3)答:小李不可能打小黄,因为假如小黄被干掉了,小林就会把小李打死,小李会打小林。如果小林没被打死,小黄也会先打小林,因为小林不死,轮到小林时,小林会选择打小黄,小黄知道,所以小黄会打小林。如果小林还没死,小林会打小黄。如果小黄没死。继续循环。由此进行了三次射击,如果其中一次射中了,就剩两个人,也就没什么好考虑的了。
(4)答:天平称东西,东西肯定是偶数,而且只能称三次,因此每次尽量选的称鸡蛋的总数接近不确定鸡蛋个数的一半,但是不能等于一半,否则会没有意义。
1 2 3 4 5 6 7 8 9 10 11 12
第一次1 2 3 4? 5 6 7 8
若1 2 3 4 = 5 6 7 8 ,第二次8 9?10 11
若8 9 <10 11,推出9是轻的,或者10和11中有一个是重的,第三次10? 11
若10<11,11重
若10>11,10重
若10=11,9轻
若1 2 3 4 < 5 6 7 8 ,第二次1 2 5? 3 4 6
若1 2 5<3 4 6,推出1和2中有一个轻的,或者6是重的,第三次1?2
若1<2,1轻
若1>2,2轻
若1=2,6重
若1 2 3 4 > 5 6 7 8,和1 2 3 4 < 5 6 7 8情况类似。