
Flink实操
文章平均质量分 89
张伯毅
某厂技术,Apache DolphinScheduler Committer.
专注于调度&实时&大数据体系~
展开
-
Flink实操 : 状态管理
.一 .概念1.1. 什么是有状态的计算?1.2. 传统的流计算系统缺少对于程序状态的有效支持1.3. Flink丰富的状态访问和高效的容错机制1.4. Keyed State1.5. xxx1.6. xxx1.7. xxx二 .xxxxxx2.1. xxx2.2. xxx2.3. xxx2.4. xxx2.5. xxx2.6. xxx三 .xxxxxx3.1. xxx3.2. xxx3.3. xxx3.4. xxx3.5. xxx3.6. xxx四 .xxxxxx4.1. xxx4.2. xxx4.3.原创 2021-03-09 21:36:24 · 899 阅读 · 1 评论 -
Flink实操 : Watermark
.一 .前言二 .概念2.1. Flink 时间语义2.2. 时间的特性2.3. Timestamp 分配和 Watermark 生成2.4. Watermark 传播2.5. ProcessFunction2.6. Watermark 处理2.7.多流的Watermark三 .代码实例一 .前言二 .概念2.1. Flink 时间语义在不同的应用场景中时间语义是各不相同的,Flink 作为一个先进的分布式流处理引擎,它本身支持不同的时间语义。其核心是 Processing Time 和 Eve原创 2021-03-09 19:18:26 · 1299 阅读 · 1 评论 -
Flink实操 : Window操作
.一 .前言二 .实现2.1. 窗口分类2.2. 时间窗口2.2.1. tumbling-time-window (翻滚窗口-无重叠数据)2.2.2.sliding-time-window (滑动窗口-有重叠数据)2.2.3. 小结2.3. Count-Window2.3.1. tumbling-count-window (无重叠数据)2.3.2. sliding-count-window (有重叠数据)2.4. Window Session2.4. Window Global2.6. Window原创 2021-03-03 22:22:21 · 1652 阅读 · 1 评论 -
Flink DataStream 算子梳理
.一 .前言1.1. Flink算子分类1.2. 数据类型转换关系二 .算子清单2.1. Map2.2. FlatMap2.3. Filter2.4. KeyBy2.5. Reduce2.6. Fold [废弃]2.7. Aggregation2.8. Window2.9. WindowAll2.10. Window Apply2.11. Window reduce2.12. Window Fold [废弃]2.13. Window Aggregation2.14. Window Join2.15.Uni原创 2021-02-23 22:28:23 · 943 阅读 · 0 评论 -
Flink实操 : Sink操作
.一 .前言二 .类型2.1. 基于本地集合的sink2.2. 基于文件的sink2.2.1.将数据写入本地文件2.2.2.将数据写入HDFS2.3. Kafka Sink2.4. MySQL Sink一 .前言二 .类型2.1. 基于本地集合的sink目标:基于下列数据,分别 进行打印输出,error输出,collect()(19, "zhangsan", 178.8),(17, "lisi", 168.8),(18, "wangwu", 184.8),(21, "zhaoliu", 1原创 2021-03-03 15:53:52 · 3185 阅读 · 0 评论 -
Flink实操 : 广播变量/累加器/分布式缓存
.一 .前言二 .广播变量使用2.1.前言2.2. 使用三 .累加器3.1. 前言3.2. 使用四 .分布式缓存4.1. 前言4.2.使用一 .前言二 .广播变量使用2.1.前言Flink支持广播。可以将数据广播到TaskManager上,数据存储到内存中。数据存储在内存中,这样可以减缓大量的shuffle操作;比如在数据join阶段,不可避免的就是大量的shuffle操作,我们可以把其中一个dataStream广播出去,一直加载到taskManager的内存中,可以直接在内存中拿数据,避免了大量原创 2021-03-03 15:53:10 · 1473 阅读 · 0 评论 -
Flink实操 : 算子操作
.一 .前言二 .算子操作2.1. map2.2. flatMap2.3. mapPartition2.4. filter2.5. reduce/groupBy2.6. reduceGroup/groupBy2.7. aggregate2.8. join2.9. union2.10. rebalance2.11. hashPartition2.12. sortPartition2.13. keyBy2.14. Connect一 .前言Transformation说明map将Data原创 2021-03-03 01:01:59 · 1491 阅读 · 0 评论 -
Flink实操 : DataSource操作
.一 .前言二 .四种读取类型2.1. 基于本地集合的source(Collection-based-source)2.2. 基于文件的source(File-based-source)2.3. 基于网络套接字的source(Socket-based-source)2.4. 自定义的source(Custom-source)2.4.1.使用MySQL作为数据源2.4.2.使用Kafka作为数据源2.4.3.自定义数据源一 .前言本文主要写Flink读取数据的方式. 只考虑DataStream API.原创 2021-03-02 19:16:01 · 1227 阅读 · 0 评论