国外有一条谜语:
问:体重800磅的大猩猩在什么地方坐?
答:它爱在哪里坐在哪里坐!
这一条谜语一般用来形容一些“强人”并不遵守大家公认的规则,所以要对其行为保持警惕。
现在有一班飞机将要起飞,乘客们正准备按照机票号码(1、2、3····N)依次排队登机。突然来了一只大猩猩(金刚同志)。他也有飞机票,但是他插队第一个登上了飞机
然后随意挑选了一个座位坐下了。根据社会的和谐程度,其他乘客有二种反应:
1.乘客们都义愤填膺,“既然金刚通知不准守规定,为什么我要遵守?”他们也随意找位置坐下,并坚决不让座给其他乘客。
2.乘客们虽然感到愤怒,但还是以“和谐”为重,如果自己的位置没有被占领,就赶紧坐下,如果自己的位置已经被别人(或者金刚同志)占了,就随机地选择另一个位置坐下,并开始闭目养神,不在挪动。
在这二种情况下,第i个乘客(除去金刚同志外)坐到自己原机票位置的概率分别是多少?
第一种情况
第一种解法:前i-1个人没有坐到第i个人的位置上,第i个人做到自己位置上。第一个人未坐到第i个人的位置上概率为(N-1)/N,第二个人未坐到第i个人的位置上,概率为(N-2)/(N-1)如此类推,第i-1个人未坐到第i个人位置上 概率为(N-i+1)/(N-i+2)。由此可得:
P=(N-1)/N * (N-2)/(N-1) * (N-3)/(N-2)*****(N-i+1)/(N-i+2) *1/(N-i+1) 约分得到
P=1/N
第二种解法:排列组合方法,从N个人中选出前i-1个人进行排序,乘以第i个人后面剩余的N-i 个人排序,即所有i能坐到他位置的发生数。总的发生数为N的全排列,由此可得:
P(M)=A(i-1,N)*A(N-i,N-i); P(N)=A(N,N);
结果为P(M)/P(N)=1/N。
第二种情况,不会了,麻烦大家给点思路。