【题目描述】
给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1]。不能使用除法。(注意:规定B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2];)
对于A长度为1的情况,B无意义,故而无法构建,因此该情况不会存在。
【解题】
假设:
left[i] = A[0]*…A[i-1]
right[i] = A[i+1]…*A[n-1]
所以:
B[i] = left[i] * right[i]
这样就避免使用了除法。但是如果对每个B[i], 0<=i<n,都这么求,显然时间复杂度太高。
left[i+1] = A[0]*…A[i-1]A[i]
right[i+1] = A{i+2]…*A[n-1]
于是,
left[i+1] = left[i] * A[i]
right[i] = right[i+1] * A[i+1]
所以,我们可以先把所有的left[i]求出,right[i]求出
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
vector<int> B(A.size(), 1);
for (int i=1; i<A.size(); ++i) {
B[i] = B[i-1] * A[i-1]; // left[i]用B[i]代替
}
int tmp = 1;
for (int j=A.size()-2; j>=0; --j) {
tmp *= A[j+1]; // right[i]用tmp代替
B[j] *= tmp;
}
return B;
}
};