pytorch:regression回归

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np

#编造一些伪数据  unsequeeze方法为将数据变成2维的  torch只会处理2维数据
x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1)    #x data (tensor),shape=(100,1)
y = x.pow(2)+0.2*torch.rand(x.size())

x,y=Variable(x),Variable(y) #将xY变成variable数据,torch只能处理这种数据


#定义神经网络主要模块
class Net(torch.nn.Module):
    def __init__(self,n_features,n_hidden,n_output): #feature 是特征数,hidden是隐变量数
        super(Net,self).__init__()
        self.hidden=torch.nn.Linear(n_features,n_hidden)
        #上为一个隐藏层的定义,n_featrue指hidden接收的特征数,n——hedeen为输出的隐藏状态数
        self.predict=torch.nn.Linear(n_hidden,n_output)
        #预测层,n_hidden为接收的隐藏层数量,n=n_output为回归预测就输出一个数量的数

#真正搭建神经网络在这里
    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x
#定义我们的神经网络
net=Net(1,10,1) #输入特征数为一个,隐藏层有10个神经元,输出数为一个
#看一下自己搭的神经网络直接print就好
print(net)

#优化我们的神经元
optimizer=torch.optim.SGD(net.parameters(),lr=0.2)
#定义一个损失函数
loss_func=torch.nn.MSELoss()

#此处添加一个可视化的过程
plt.ion()   #将可视化变成一个实时的展示过程
plt.show()

#开始训练
for t in range(200):    #训练100步试试
    prediction=net(x)
    loss=loss_func(prediction,y)

    #先优化
    optimizer.zero_grad()   #先将所有梯度变为0
    loss.backward() #反向传播,为每一个节点计算出梯度
    optimizer.step() #用optimizer来优化梯度

    if t % 5 ==0:
        #plot and show learning progress
        plt.cla()
        plt.scatter(x.data.numpy(),y.data.numpy())
        plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
        plt.text(0.5,0,'Loss=%.4f' % loss.data,fontdict={'size':20,'color':'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值