【机器学习-聚类算法k-means】


一、聚类学习算法实现

  1. 随机设置K个特征空间内的点作为初始的聚类中心
  2. 对于其他每个点计算到K个中心点的距离(欧氏距离),未知的点选择最近的一个中心点作为标记类别
  3. 聚类完成之后,计算每个类别的中心点(平均值)
  4. 如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第2步过程

二、案例

1.引入库

代码如下(示例):

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabaz_score

2.程序代码

#创建数据集
# cluster_std 分布,值越大越分散
# n_features 几个特征
# centers 中心点
X,y = make_blobs(n_samples=100,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.1,0.1,0.1],random_state=1)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()
# 训练
# n_clusters 聚成几类
estimator = KMeans(n_clusters=4,random_state=2)
pre = estimator.fit_predict
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值