自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 ORM框架(SQLAlchemy 与 Tortoise )

ORM(Object-Relational Mapping,对象关系映射)是一种编程技术,用于在面向对象编程语言和关系数据库之间建立映射关系。它允许开发者使用面向对象的方式操作数据库,而不需要编写复杂的SQL语句。ORM的核心优势:代码可读性:使用Python对象而非SQL语句,代码更直观数据库无关性:同一套代码可以在不同数据库间切换安全性:自动防止SQL注入攻击维护性:模型变更时自动处理数据库结构变化。

2025-06-06 17:29:26 1104

原创 web框架(Django 与 FastAPI)

Django 是一个成熟的、全功能 Python Web 框架,遵循"电池已包含"的理念,提供了构建 Web 应用所需的几乎所有组件。核心特点:完整解决方案:提供从数据库到前端的完整开发工具链约定优于配置:通过合理的默认设置减少配置工作快速开发:内置管理后台、用户认证、表单处理等常用功能企业级稳定性:经过十多年的生产环境验证内容管理系统(CMS)电商网站企业级Web应用需要快速原型开发的项目。

2025-06-06 14:29:48 887

原创 Langchain学习笔记(十三):Retriever检索器高级应用

在RAG(检索增强生成)系统中,检索器(Retriever)是连接知识库和大模型的关键桥梁。它决定了系统能否准确理解用户意图,并从海量文档中找到最相关的信息。Retriever(检索器)是一个抽象接口,负责根据用户查询从知识库中检索相关文档。它的核心作用是将用户的自然语言查询转换为向量,然后在向量数据库中找到最相似的文档片段核心功能查询理解:将用户的自然语言查询转换为机器可理解的向量表示相似度匹配:在向量空间中计算查询与文档的相似度结果排序:根据相关性对检索到的文档进行排序结果过滤。

2025-06-04 11:41:58 878

原创 Langchain学习笔记(十二):Memory机制与对话管理

在构建智能对话系统时,记忆功能是至关重要的。想象一下,如果每次与AI对话都像第一次见面一样,无法记住之前的交流内容,这样的体验将是多么糟糕。LangChain的Memory机制正是为了解决这个问题而设计的,它让AI能够"记住"对话历史,从而提供更加连贯和个性化的交互体验。Memory(记忆)在LangChain中是一个核心概念,它就像人类的记忆系统一样,负责在对话过程中存储、管理和检索历史信息。Memory的核心作用。

2025-06-03 18:03:49 638

原创 Langchain学习笔记(十一):Chain构建与组合技巧

在LangChain的发展过程中,API设计经历了重要的演进。从0.1.17版本开始,传统的Chain类(如LLMChain、SequentialChain等)被标记为已弃用,官方推荐使用更现代的LCEL(LangChain Expression Language)和管道符(|)语法。本文将详细对比新旧两种方式,帮助大家理解这一重要变化Chain(链)是LangChain中用于连接多个组件的核心抽象。

2025-06-03 15:40:18 689

原创 Langchain学习笔记(十):文档加载与处理详解

在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提供了灵活的文本分割策略。文档加载器是Langchain中负责从各种数据源读取内容并转换为标准Document对象的组件。: 文档的实际文本内容metadata: 文档的元数据信息(如文件名、页码、创建时间等)

2025-06-03 14:19:29 622

原创 python(进程、线程和协程)

并发:是“能同时处理多个事”(逻辑上并行:是“真正在同时做事”(物理上协程= 主动让出控制权(代码里写await线程= 系统自动切换(无需手动控制)进程= 真正的并行(多核 CPU 发挥作用)Python 中:并发靠 协程/线程,要并行只能用 进程最终目标:合理利用CPU和I/O资源,减少空闲时间并发/并行是目标(任务如何同时执行)进程/线程/协程是手段(如何实现并发或并行)同步/异步是编程模型(代码如何等待结果)阻塞/非阻塞是底层行为(线程是否被挂起)

2025-06-01 22:35:58 980

原创 Langchain学习笔记(九):输出解析与结构化数据处理

有时,内置的解析器无法满足特定需求,这时需要开发自定义解析器。import re# 自定义解析器 - 提取关键词及其重要性评分return """请以如下格式输出关键词及其重要性评分(1-10):关键词1: 评分关键词2: 评分...例如:人工智能: 9机器学习: 8神经网络: 7"""if match:})# 初始化解析器# 创建提示模板template = """分析以下文本,提取5个最重要的关键词,并给出重要性评分(1-10)。文本: {text}

2025-05-25 15:41:20 730

原创 Langchain学习笔记(八):Prompt工程与模板设计

本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。

2025-05-23 21:07:38 486

原创 Langchain学习笔记(七):Langchain模型接入与调用

本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。

2025-05-22 17:40:05 853

原创 Langchain学习笔记(六):Langchain框架介绍与环境搭建

Ollama是一个轻量级工具,用于在本地运行各种开源大语言模型,如Llama 2、Mistral等。它的优势在于:简化本地模型的运行和管理提供API接口,便于与Langchain集成支持多种开源模型资源占用相对较低ollama与langchainOllama是一个应用工具,可以在本地部署和运行大模型,并提供标准化的API接口。

2025-05-21 17:26:12 936

原创 Langchain学习笔记(五):检索增强生成(RAG)基础原理

本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。

2025-05-20 16:18:47 646

原创 Langchain学习笔记(四):向量数据库基础与选型

向量数据库是一种专门设计用于存储、管理和检索高维向量数据的数据库系统。与传统关系型数据库不同,向量数据库针对向量相似性搜索进行了优化,能够高效地找出与查询向量最相似的结果。在AI领域,特别是大语言模型应用中,文本、图像、音频等内容通常被转换为高维向量(嵌入向量Embeddings,通常是几百到几千维的浮点数数组),这些向量捕获了原始内容的语义信息。向量数据库正是为管理这些向量而生。向量数据库的核心是高效的索引算法,这些算法决定了检索的速度和准确性。

2025-05-19 17:35:28 599

原创 Langchain学习笔记(三):大模型访问方式与部署选择

本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。在AI大模型应用开发过程中,如何访问和部署大模型是一个关键决策。本文将详细介绍不同的大模型访问方式、部署选择以及相关的技术考量,帮助开发者根据自身需求选择最合适的方案。

2025-05-17 17:30:07 904

原创 Langchain学习笔记(二):大语言模型开发基础概念详解

Token是大语言模型处理文本的基本单位,可以理解为模型"思考"的最小片段。与我们日常理解的"词"不同,token是经过特殊算法切分的文本单元。不同语言的token特点英文:常见短单词通常是一个token(如"the"、“cat”),而长词或不常见词会被分成多个token(如"unconventional"可能被分为"un"、“convention”、“al”)中文:通常一个汉字对应一个token,但有时会将常见词组合成一个token标点符号:通常是单独的token空格:也被视为独立token特殊字符。

2025-05-16 17:24:47 573

原创 Langchain学习笔记(一):大语言模型概述与发展历程

大语言模型(英文简写LLM)是一种通过学习海量文本数据来理解和生成人类语言的AI系统。简单来说,它就像一个"超级文本预测器",能够根据已有文本预测接下来最可能出现的内容。从技术角度看,LLM是一种基于深度学习的神经网络模型,通常采用Transformer架构,包含数十亿到数千亿个参数,经过海量文本数据训练而成。这些模型能够捕捉语言的复杂模式、语法规则、事实知识,甚至是文化背景和上下文关系。

2025-05-15 17:11:42 918

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除