kafka 生产者__sender线程源码剖析

kafka 生产者__sender线程源码剖析

前面我们已经讲解到kafka将消息放入消息累加器中,在本篇中将分析sender如何从RecordAccumulator中获取消息,并发送到broker去。

在实例化kafka对象的时候,我们会创建并启动sender线程:

           this.sender = newSender(logContext, kafkaClient, this.metadata);
            String ioThreadName = NETWORK_THREAD_PREFIX + " | " + clientId;
            this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
            this.ioThread.start();

sender线程会在producer关闭前,一直循环调用 runOnce()方法:

 void runOnce() {
        if (transactionManager != null) {
			// ... 省略开启事务的一些操作
        }

        long currentTimeMs = time.milliseconds();
        long pollTimeout = sendProducerData(currentTimeMs);
        client.poll(pollTimeout, currentTimeMs);
    }

可以看出,该方法的核心代码是:sendProducerData(currentTimeMs);

以及 client.poll(pollTimeout, currentTimeMs);

  • sendProducerData()方法解析:

    private long sendProducerData(long now) {
        	//1、通过生产者的相关源信息获取kafka集群
            Cluster cluster = metadata.fetch();
            //获取已经准备好的将要发送的数据
            RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
    
     		 // ...
    		
            // 2、create produce requests
          // 将要发送的消息转换成  <NodeId,List<ProducerBatch>>的形式,这里完成了从应用层到I/O层的转换 ,并从消息累加器中将这些ProducerBatch 移除
            Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now);
        //3、将这些ProducerBatch加入到正在处理的  数据中  inFlightBatches
            addToInflightBatches(batches);
    		
        //  4、获取已经超时未发送的 消息  如果有就调用failBatch方法进行处理
            accumulator.resetNextBatchExpiryTime();
            List<ProducerBatch> expiredInflightBatches = getExpiredInflightBatches(now);
            List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(now);
            expiredBatches.addAll(expiredInflightBatches);
    
    		//5、执行请求发送
            sendProduceRequests(batches, now);
            return pollTimeout;
        }
    
    

    从上面的分析我们可以看出,sendProducerData()方法主要做了如下事情:

    • 1、调用消息累加器的ready()方法获取到已经准备好的数据
    • 2、完成了消息由逻辑层的topicPartition到IO层的转换并将将要发送批次的消息从队列中移除。
    • 3、将准备要发送的数据加入到inflightBatches中
    • 4、调用sendProducerRequests()方法完成消息的发送。

    接下来我们来看sendProduceRequests方法完成的功能:

       private void sendProduceRequests(Map<Integer, List<ProducerBatch>> collated, long now) {
            for (Map.Entry<Integer, List<ProducerBatch>> entry : collated.entrySet())
                sendProduceRequest(now, entry.getKey(), acks, requestTimeoutMs, entry.getValue());
        }
    

    即循环调用sendProduceRequest()来进行处理。sendProduceRequest方法如下:

    主要完成的功能为:根据给定的消息批次创建一个ClientRequest请求对象,并调用NetworkClient的send方法来发送数据

      /**
         * Create a produce request from the given record batches
         */
        private void sendProduceRequest(long now, int destination, short acks, int timeout, List<ProducerBatch> batches) {
            	
                 ProduceRequest.Builder requestBuilder = ProduceRequest.Builder.forMagic(minUsedMagic, acks, timeout,
                    produceRecordsByPartition, transactionalId);
            // 创建回调对象,当请求响应的时候,将会回调onComplete方法
               RequestCompletionHandler callback = new RequestCompletionHandler() {
                public void onComplete(ClientResponse response) {
                    handleProduceResponse(response, recordsByPartition, time.milliseconds());
                }
            };
     		
            //将batches 转换为requestBuilder  对象,并使用其创建clientRequest
            String nodeId = Integer.toString(destination);
            ClientRequest clientRequest = client.newClientRequest(nodeId, requestBuilder, now, acks != 0,
                    requestTimeoutMs, callback);
            //调用客户端的send方法发送数据
            client.send(clientRequest, now);
          
        }
    

    最后我们再次追踪下send方法的实现:

        @Override
        public void send(ClientRequest request, long now) {
            doSend(request, false, now);
        }
    

    那么 doSend(request, false, now);方法做了什么事情,我们不妨继续看看

     private void doSend(ClientRequest clientRequest, boolean isInternalRequest, long now) {		//确认客户端时
            ensureActive();
            String nodeId = clientRequest.destination();
    		//获取到requestBuilder对象
            AbstractRequest.Builder<?> builder = clientRequest.requestBuilder();
            try {
                //
                NodeApiVersions versionInfo = apiVersions.get(nodeId);
       			//执行发送操作
                doSend(clientRequest, isInternalRequest, now, builder.build(version));
            } catch (UnsupportedVersionException unsupportedVersionException) {
                //进行异常处理
            }
    			
        }
    
    

    我们继续往下追doSend(clientRequest, isInternalRequest, now, builder.build(version)); 方法:

        private void doSend(ClientRequest clientRequest, boolean isInternalRequest, long now, AbstractRequest request) {
            String destination = clientRequest.destination();
            RequestHeader header = clientRequest.makeHeader(request.version());
    		//创建send实例
            Send send = request.toSend(destination, header);
            InFlightRequest inFlightRequest = new InFlightRequest(
                    clientRequest,
                    header,
                    isInternalRequest,
                    request,
                    send,
                    now);
            //这个是用来保存将要发送或等待响应集
            this.inFlightRequests.add(inFlightRequest);
            //将给定的请求入队,给后续的poll方法调用
            selector.send(send);
        }
    
  • client.poll(pollTimeout, currentTimeMs);

  @Override
    public List<ClientResponse> poll(long timeout, long now) {
        ensureActive();

        if (!abortedSends.isEmpty()) {
            // If there are aborted sends because of unsupported version exceptions or disconnects,
            // handle them immediately without waiting for Selector#poll.
            List<ClientResponse> responses = new ArrayList<>();
            handleAbortedSends(responses);
            completeResponses(responses);
            return responses;
        }

        long metadataTimeout = metadataUpdater.maybeUpdate(now);
        try {
            //这个时使用selector来执行数据发送操作
            this.selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs));
        } catch (IOException e) {
            log.error("Unexpected error during I/O", e);
        }

        //  执行流程完成操作
        long updatedNow = this.time.milliseconds();
        List<ClientResponse> responses = new ArrayList<>();
        handleCompletedSends(responses, updatedNow);
        handleCompletedReceives(responses, updatedNow);
        handleDisconnections(responses, updatedNow);
        handleConnections();
        handleInitiateApiVersionRequests(updatedNow);
        handleTimedOutRequests(responses, updatedNow);
        completeResponses(responses);

        return responses;
    }

至此,我们已经完成整个kafka生产端的数据发送源码解析工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值