WARNING: MongoDB version < 3.2 detected
ERROR partitioner.DefaultMongoPartitioner:
----------------------------------------
WARNING: MongoDB version < 3.2 detected.
----------------------------------------
With legacy MongoDB installations you will need to explicitly configure the Spark Connector with a partitioner.
This can be done by:
* Setting a "spark.mongodb.input.partitioner" in SparkConf.
* Setting in the "partitioner" parameter in ReadConfig.
* Passing the "partitioner" option to the DataFrameReader.
The following Partitioners are available:
* MongoShardedPartitioner - for sharded clusters, requires read access to the config database.
* MongoSplitVectorPartitioner - for single nodes or replicaSets. Utilises the SplitVector command on the primary.
* MongoPaginateByCountPartitioner - creates a specific number of partitions. Slow as requires a query for every partition.
* MongoPaginateBySizePartitioner - creates partitions based on data size. Slow as requires a query for every partition.
在通过Spark往mongodb读写数据时候,这里会报一个错,这是因为:
mongodb版本低于3.2时,读取数据时如果不指定ReadConfig中partitioner
,会使用默认的DefaultMongoPartitioner
,但是3.2的时候还没有DefaultMongoPartitioner这个类,所以
会报错。
按照提示我们只需要指定一个Partitioners,就可以了。
随便选一个,我这里选择MongoShardedPartitioner
sparkConf.set("spark.mongodb.input.partitioner","MongoShardedPartitioner") .set("spark.mongodb.input.partitionerOptions.shardkey","_id")
具体配置参考:
https://docs.mongodb.com/spark-connector/current/configuration/#input-configuration
文章参考:
http://wzktravel.github.io/2016/10/20/use-mongo-spark-connector/