Value-Based Reinforcement Learning(1)

Action-Value Functions

Discounted Return(未来的reward,由于未来存在不确定性,所以未来的reward 要乘以\gamma进行打折)

U_{t} = R_t +\gamma R_{t+1} +\gamma ^2R_{t+2} + \gamma^3R_{t+3} + ...

这里的U_t依赖actions A_{t},A_{t+1},A_{t+2},...,和states S_{t},S_{t+1},S_{t+2},...

这里

Policy Function : \pi (a|s) = P[A=a|S=s]   ,表达了action的随机性

State Transition : p(s^{'}|s,a) = P[S^{'}=s^{'}|S = s,A=a],表达了转移状态的随机性

由于存在action,和state随机性,现在想消除随机性,可以求U_{t}的数学期望:

Action-Value Function: Q_\pi (s_t, a_t) = E[U_t|S_t=s_t, A_t=a_t] ,在当前策略\pi下,状态s_ta_t的回报

Optimal Action-Value Function : Q^{*}(s_t, a_t) = max \pi Q_\pi (s_t, a_t)

Q^{*}可以给任意的动作打分,agent可以根据Q^{*}的打分,做最有利的动作

Deep Q-Network (DQN)

如果我们知道了Q^{*},那么每一步最好的动作a^{*} = argmax aQ^{*}(s,a)

DQN的目的就是近似Q^{*},即神经网络Q(s,a;w)近似Q^{*}(s,a)

流程如下:s_t -> a_t(DQN给出) ->s_{t+1} (State Transition)   -> a_{t+1}(DQN给出)

                                                 ->r_t(监督回报,用来训练DQN)

以此类推

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值