Python3-学生成绩预测基本求法

本文介绍了一种基于Python实现的学生学期成绩预测方法,利用给定的学期、学号和排名数据,通过设定第一学期和第二学期成绩的不同权重,计算出最终的加权成绩,并根据加权成绩对学生进行排名。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python3-学生成绩预测基本求法

提供的数据集中的数据是 学期,学号,排名

每一个学号提供了两个学期的成绩

最终根据第一学期的成绩比重0.35,第二学期的比重为0.65

# -*- coding: utf-8 -*-

def Weight_score():
    file_score = open("../data/Score Predict.csv", encoding="unicode_escape")  # 将原来的txt文件按学号从大到小排序后保存为csv文件
    file_result = open("./result/35_65_rank.txt", "w")
    # 设置两个学期的权重比率
    factor = [0.35, 0.65]
    stu = {}
    first_line = 0
    count = 0
    for line in file_score:
        if first_line == 0:
            first_line = 1
            continue  # 第一行是 学期 学号 排名,要先排除第一行
        # 去除空格,以","进行分割 学期,学号,排名
        sem, id, rank = line.strip("").split(",")
        # 如果id不存在就赋值为0 初始化id都为0
        stu.setdefault(id, 0)
        # 第一学期:rank * 0.35, 第二学期:rank * 0.65 ,两学期的分数叠加起来
        stu[id] += int(rank) * factor[int(sem) - 1]
        count += 1
        # print("stu  id:{0}  rank:{1}".format(stu.keys(),stu.values()))
    Ranked = sorted(zip(stu.values(), stu.keys()))  # 按得到的名次排序,id在后
    print("数据集中的数据总数:{0} ".format(count))
    file_result.write("id,rank\n")
    i = 1
    print("排序之后的数据")
    for line in Ranked:
        print("\t排名: {0} 学号: {1} ".format(i, line[1]))
        # 将排序之后的 id rank写入到 file_result文件中 换行
        file_result.write(line[1] + "," + str(i) + "\n")
        # 行数+1
        i = i + 1
    file_score.close()
    file_result.close()


if __name__ == '__main__':
    Weight_score()  # 第一二学期排名乘以权重

运行之后为:

求出来的数据写入到35_65_rank.txt中

 

本文介绍的是利用Python语言,做成绩分析并生成成绩分析动态图表。Python语言可以利用Pandas、Pyecharts等各种类库,进行数据分析。 本文介绍的成绩分析大体分为三步: 一、拼合单科成绩,合成学年成绩,计算总分,按总分成绩排名次,然后由学年成绩筛选出各个班级的成绩,将学年成绩,各班级成绩存入一个Excel文件中,工作表分别命名为学年成绩,高三(1)班……等 二、利用生成的第一步生成的Excel文件,做成绩分析,保存成绩分析表格。 三、利用成绩分析表格,做成绩分析动态图。 下面是部分源代码: 1、成绩整理与合并 import glob import os import pandas as pd from functools import reduce inputPath="./原始成绩/" writer_lk = pd.ExcelWriter('./整理后的成绩/2020一模理科总成绩及各班级成绩.xlsx') writer_wk = pd.ExcelWriter('./整理后的成绩/2020一模文科总成绩及各班级成绩.xlsx') inputWorkbook=glob.glob(os.path.join(inputPath,"*.xls")) #====================读取全部学生的所有科目成绩=================================== yw_score = pd.read_excel(inputWorkbook[2]) sxlk_score = pd.read_excel(inputWorkbook[1]) sxwk_score = pd.read_excel(inputWorkbook[0]) yy_score = pd.read_excel(inputWorkbook[5]) yy_score['英语'] = (yy_score['英语'] * 1.25).round(0)#英语成绩不计算听力成绩*1.25 lkzh_score = pd.read_excel(inputWorkbook[4]) wkzh_score = pd.read_excel(inputWorkbook[3]) #======================================================================= #====================整理出理科成绩及分班成绩、计算总分、总分排名、班级排名============================= lk_class = ['高三(1)班','高三(2)班','高三(3)班','高三(4)班'] wk_class = ['高三(5)班','高三(6)班'] lk_yw = yw_score.loc[(yw_score.班级.isin(lk_class)), ['班级','姓名','语文']] lk_sx = sxlk_score[['姓名','数学']] lk_yy = yy_score.loc[(yy_score.班级.isin(lk_class)), ['姓名','英语']] lk_k3 = lkzh_score[['姓名','物理','化学','生物','理综']] lk_list = [lk_yw, lk_sx, lk_yy, lk_k3] score_lk = (reduce(lambda left, right: pd.merge(left, right, on='姓名'), lk_list)) score_lk['总分'] = (score_lk['语文'] + score_lk['数学'] + score_lk['英语'] + score_lk['理综']).round(0) def sort_grade(score): score_sort = score.sort_values(by=['总分'], ascending=False) score_sort['年级排名'] = score_sort['总分'].rank(ascending=0,method='min') return score_sort def sort_class_lk(score_garde,name): class_sort = score_garde.loc[score_garde.班级 == name, :] class_sort = class_sort.sort_values(by=['总分'], ascending=False) class_sort['班级排名'] = class_sort['总分'].rank(ascending=0,method='min') class_sort.to_excel(writer_lk, index=None, sheet_name=name) lk_grade_sort = sort_grade(score_lk) lk_grade_sort.to_excel(writer_lk, index=None, sheet_name='学年成绩') for lk in lk_class: class_sort = sort_class_lk(score_lk, lk) writer_lk.save() writer_lk.close() # #============整理出文科成绩及分班成绩、计算总分、总分排名、班级排名================== wk_yw = yw_score.loc[(yw_score.班级.isin(wk_class)), ['班级','姓名','语文']] wk_sx = sxwk_score[['姓名','数学']] wk_yy = yy_score.loc[(yy_score.班级.isin(wk_class)), ['姓名','英语']] wk_k3 = wkzh_score[['姓名','政治','历史','地理','文综']] wk_list = [wk_yw, wk_sx, wk_yy, wk_k3] score_wk = (reduce(lambda left, right: pd.merge(left, right, on='姓名'), wk_list)) score_wk['总分'] = (score_wk['语文'] + score_wk['数学'] + score_wk['英语'] + score_wk['文综']).round(0) def sort_class_wk(score_garde,name): class_sort = score_garde.loc[score_garde.班级 == name, :] class_sort = class_sort.sort_values(by=['总分'], ascending=False) class_sort['班级排名'] = class_sort['总分'].rank(ascending=0,method='min') class_sort.to_excel(writer_wk, index=None, sheet_name=name) wk_grade_sort = sort_grade(score_wk) wk_grade_sort.to_excel(writer_wk, index=None, sheet_name='学年成绩') for wk in wk_class: class_sort = sort_class_wk(wk_grade_sort, wk) writer_wk.save() writer_wk.close() 2、成绩区间分割与统计 #coding:utf-8 import numpy as np import pandas as pd from functools import reduce fpath_lk="./整理后的成绩/2020一模理科总成绩及各班级成绩.xlsx" fpath_wk="./整理后的成绩/2020一模文科总成绩及各班级成绩.xlsx" writer_lk = pd.ExcelWriter('./整理后的成绩/2020一模理科成绩区间分布统计.xlsx') writer_wk = pd.ExcelWriter('./整理后的成绩/2020一模文科成绩区间分布统计.xlsx') lk = pd.read_excel(fpath_lk, None) #获取表格中的所有工作表的内容 wk = pd.read_excel(fpath_wk, None) #===================1.定义区间分割函数===================================== def cut_750(score_750,len): bins_750= [0,370,380,390,400,410,420,430,440,450,460,470,480,490,500,510,520,530,540,550,560,570,580,590,600,620,640,660,750] labels_750 = ['0-370','370-379','380-389','390-399','400-409','410-419','420-429','430-439','440-449','450-459','460-469','470-479','480-489','490-499','500-509','510-519','520-529','530-539','540-549','550-559','560-569','570-579','580-589','590-599','600-619','620-639','640-659','660-750'] cut_750 = pd.cut(score_750, bins_750, labels=labels_750, right=False) qj = pd.DataFrame({'区间':pd.value_counts(cut_750).index,'人数':pd.value_counts(cut_750),'百分比':((pd.value_counts(cut_750))/len).round(3).apply(lambda x: format(x, '.2%'))}).sort_values(by='区间', ascending=False) qj = qj.reset_index(drop=True) return qj def cut_150(score_150,len): bins_150 = [0,30,60,90,120,150] labels_150 = ['0-30', '30-60', '60-90', '90-120', '120-150'] cut_150 = pd.cut(score_150, bins_150, labels=labels_150, right=False) qj = pd.DataFrame({'区间':pd.value_counts(cut_150).index,'人数':pd.value_counts(cut_150),'百分比':((pd.value_counts(cut_150))/len).round(3).apply(lambda x: format(x, '.2%'))}).sort_values(by='区间') 其他源代码及始数据已上传,欢迎各位借鉴,第一次编程,希望网友们能指点不足之处,联系qq:912182988
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangvalue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值