一道非常易错的定积分问题的本质详解

计算 ∫ 0 3 π 4 d x 2 + cos ⁡ 2 x \int_0^{\frac{3 \pi}{4}} \frac{d x}{2+\cos 2 x} 043π2+cos2xdx

经典错误一

∫ 0 3 π 4 d x 2 + cos ⁡ 2 x = ∫ 0 3 π 4 d x 2 + 2 cos ⁡ 2 x − 1 = ∫ 0 3 π 4 d x sin ⁡ 2 x + 3 cos ⁡ 2 x = ∫ 0 3 π 4 sec ⁡ 2 x   d x 3 + tan ⁡ 2 x = 1 3 ∫ 0 3 π 4 d ( 1 3 tan ⁡ x ) 1 + ( 1 3 tan ⁡ x ) 2 = [ 1 3 arctan ⁡ ( 1 3 tan ⁡ x ) ] 0 3 π 4 = − π 6 3 \begin{aligned} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+\cos 2 x} & =\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+2 \cos ^2 x-1}=\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{\sin ^2 x+3 \cos ^2 x} \\ & =\int_0^{\frac{3 \pi}{4}} \frac{\sec ^2 x \mathrm{~d} x}{3+\tan ^2 x}=\frac{1}{\sqrt{3}} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d}\left(\frac{1}{\sqrt{3}} \tan x\right)}{1+\left(\frac{1}{\sqrt{3}} \tan x\right)^2} \\ & =\left[\frac{1}{\sqrt{3}} \arctan \left(\frac{1}{\sqrt{3}} \tan x\right)\right]_0^{\frac{3 \pi}{4}}=-\frac{\pi}{6 \sqrt{3}} \end{aligned} 043π2+cos2xdx=043π2+2cos2x1dx=043πsin2x+3cos2xdx=043π3+tan2xsec2x dx=3 1043π1+(3 1tanx)2d(3 1tanx)=[3 1arctan(3 1tanx)]043π=63 π

错误分析一

这个问题的本质是函数 F ( x ) = 1 3 arctan ⁡ ( tan ⁡ x 3 ) F(x)=\frac{1}{\sqrt{3}} \arctan \left(\frac{\tan x}{\sqrt{3}}\right) F(x)=3 1arctan(3 tanx)在区间 [ 0 , π ] [0,\pi] [0,π]上有间断点 x = π 2 x=\frac{\pi}{2} x=2π,因此不能用牛顿——莱布尼茨公式.

经典错误二

∫ 0 3 π 4 d x 2 + cos ⁡ 2 x = ∫ 0 3 π 4 d x 2 + 2 cos ⁡ 2 x − 1 = ∫ 0 3 π 4 d x sin ⁡ 2 x + 3 cos ⁡ 2 x = ∫ 0 3 x 4 sec ⁡ 2 x   d x 3 + tan ⁡ 2 x = 1 3 ∫ 0 3 π 4 d ( 1 3 tan ⁡ x ) 1 + ( 1 3 tan ⁡ x ) 2 = 1 3 ∫ 0 3 π 4 d ( 1 3 t ) 1 + ( 1 3 t ) 2 = [ 1 3 arctan ⁡ t 3 ] 0 − 1 = − π 6 3 \begin{aligned} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+\cos 2 x} & =\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+2 \cos ^2 x-1}=\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{\sin ^2 x+3 \cos ^2 x} \\ & =\int_0^{\frac{3 x}{4}} \frac{\sec ^2 x \mathrm{~d} x}{3+\tan ^2 x}=\frac{1}{\sqrt{3}} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d}\left(\frac{1}{\sqrt{3}} \tan x\right)}{1+\left(\frac{1}{\sqrt{3}} \tan x\right)^2} \\ & =\frac{1}{\sqrt{3}} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d}\left(\frac{1}{\sqrt{3}} t\right)}{1+\left(\frac{1}{\sqrt{3}} t\right)^2}=\left[\frac{1}{\sqrt{3}} \arctan \frac{t}{\sqrt{3}}\right]_0^{-1} \\ & =-\frac{\pi}{6 \sqrt{3}} \end{aligned} 043π2+cos2xdx=043π2+2cos2x1dx=043πsin2x+3cos2xdx=043x3+tan2xsec2x dx=3 1043π1+(3 1tanx)2d(3 1tanx)=3 1043π1+(3 1t)2d(3 1t)=[3 1arctan3 t]01=63 π

错误分析二

有的小伙伴就说了,我做换元 tan ⁡ x = t \tan x=t tanx=t之后,总没有间断点的问题了吧?总可以用牛莱公式了吧?但是这个换元本身就是有问题的,我们看不定积分的换元和定积分的换元有什么区别。
不定积分的第一类换元法如下:

不定积分的第二类换元法如下:

定积分的换元法如下:

对应的注:

我们可以看出,不定积分有两个换元法,但是定积分只有一个,定积分的换元法类似于不定积分的第二类换元法。也就是做 x = φ ( t ) x=\varphi(t) x=φ(t)换元,并且函数 x = φ ( t ) x=\varphi(t) x=φ(t)的值域覆盖住定积分的上下限.而经典错误二中的换元是把 tan ⁡ x \tan x tanx换成了 t t t类似于不定积分的第一类换元,这个在定积分换元中是“不存在”的,想转换成定积分的换元,相当于做 x = arctan ⁡ t x=\arctan t x=arctant的换元,但是这样的话,就要求 arctan ⁡ t \arctan t arctant的值域可以覆盖掉积分的上下限,而 arctan ⁡ t \arctan t arctant的值域是 ( − π 2 , π 2 ) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) (2π,2π),覆盖不到定积分的上限 3 π 4 \frac{3\pi}{4} 43π,因此不满足定积分换元的前提条件.

正确解法一

求出“真正”的原函数

经典错误解法1的原函数如图:

真正的原函数的图像如图:

因此
∫ 0 3 π 4 d x 2 + cos ⁡ 2 x = 1 3 arctan ⁡ ( tan ⁡ 3 π 4 3 ) + π 3 = 5 π 6 3 \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+\cos 2 x}=\frac{1}{\sqrt{3}} \arctan \left(\frac{\tan \frac{3 \pi}{4}}{\sqrt{3}}\right)+\frac{\pi}{\sqrt{3}}=\frac{5 \pi}{6 \sqrt{3}} 043π2+cos2xdx=3 1arctan(3 tan43π)+3 π=63 5π

正确解法二

将积分拆成两段:
∫ 0 3 π 4 d x 2 + cos ⁡ 2 x = ∫ 0 3 π 4 d x 2 + 2 cos ⁡ 2 x − 1 = ∫ 0 3 π 4 d x sin ⁡ 2 x + 3 cos ⁡ 2 x = ∫ 0 3 π 4 sec ⁡ 2 x   d x 3 + tan ⁡ 2 x = 1 3 ∫ 0 3 π 4 d ( 1 3 tan ⁡ x ) 1 + ( 1 3 tan ⁡ x ) 2 = 1 3 [ arctan ⁡ ( tan ⁡ x 3 ) ] 0 π 2 + 1 3 [ arctan ⁡ ( tan ⁡ x 3 ) ] π 2 3 π 4 = π 2 3 + − π 6 3 + π 2 3 = 5 π 6 3 \begin{aligned} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+\cos 2 x} & =\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+2 \cos ^2 x-1}=\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{\sin ^2 x+3 \cos ^2 x} \\ & =\int_0^{\frac{3 \pi}{4}} \frac{\sec ^2 x \mathrm{~d} x}{3+\tan ^2 x}=\frac{1}{\sqrt{3}} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d}\left(\frac{1}{\sqrt{3}} \tan x\right)}{1+\left(\frac{1}{\sqrt{3}} \tan x\right)^2} \\ & =\frac{1}{\sqrt{3}}\left[\arctan \left(\frac{\tan x}{\sqrt{3}}\right)\right]_0^{\frac{\pi}{2}}+\frac{1}{\sqrt{3}}\left[\arctan \left(\frac{\tan x}{\sqrt{3}}\right)\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \\ & =\frac{\pi}{2 \sqrt{3}}+\frac{-\pi}{6 \sqrt{3}}+\frac{\pi}{2 \sqrt{3}}=\frac{5 \pi}{6 \sqrt{3}} \end{aligned} 043π2+cos2xdx=043π2+2cos2x1dx=043πsin2x+3cos2xdx=043π3+tan2xsec2x dx=3 1043π1+(3 1tanx)2d(3 1tanx)=3 1[arctan(3 tanx)]02π+3 1[arctan(3 tanx)]2π43π=23 π+63 π+23 π=63 5π

正确解法三

通过换元,改变定积分的区间
∫ 0 3 π 4 d x 2 + cos ⁡ 2 x = ∫ 0 3 π 4 d x sin ⁡ 2 x + 3 cos ⁡ 2 x , ( x = π 2 − t ) = ∫ − π 4 π 2 d t cos ⁡ 2 t + 3 sin ⁡ 2 t = [ 1 3 arctan ⁡ ( 3 tan ⁡ x ) ] − π 4 π 2 = 5 π 6 3 \begin{aligned} \int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{2+\cos 2 x} & =\int_0^{\frac{3 \pi}{4}} \frac{\mathrm{d} x}{\sin ^2 x+3 \cos ^2 x},\left(x=\frac{\pi}{2}-t\right) \\ & =\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\mathrm{d} t}{\cos ^2 t+3 \sin ^2 t} \\ & =\left[\frac{1}{\sqrt{3}} \arctan (\sqrt{3} \tan x)\right]_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \\ & =\frac{5 \pi}{6 \sqrt{3}} \end{aligned} 043π2+cos2xdx=043πsin2x+3cos2xdx,(x=2πt)=4π2πcos2t+3sin2tdt=[3 1arctan(3 tanx)]4π2π=63 5π

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新威考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值