问题出自编程之美,感觉书上讲的比较晦涩,本人最喜欢通过例子来学习了
问题:给定一个正整数N,求一个最小的正整数M,使得N*M的十进制表示形式里只有1和0
这里分析N=13的情况
由于N*M比M有特征,所以从N*M入手
设ans=N*M
当ans有1位时,ans=1,ans%N=1
当ans有2位时,ans=10,11,ans%N=10,11
当ans有3位时,ans=100,101,110,111,ans%N=9,10,6,7
计算ans有4位的情况时
ans=1000
ans=1001=1000+1
ans=1010=1000+10
ans=1011=1000+11
ans=1100=1000+100
ans=1101=1000+101
ans=1110=1000+110
ans=1111=1000+111
以上的1,10,11,100,101,110,111模N的值均已经计算过
计算4位产出的模值就是用1000%N的值加上原本存在的所有模值,看是否产生新的模值
当我们计算完3位的情况后,将1,10,11,100,101,110,111模N的情况保存,这样计算4位的情况复杂度只有O(N)
计算完三位只需保存所有产生的模值即可
假设最后结果为K位
复杂度仅为O(KN)