找符合条件的整数

本文深入解析如何在给定正整数N的情况下,找到最小的正整数M,使得N*M的十进制表示形式仅由1和0构成。通过逐步分析不同位数的情况,本文展示了如何通过保存已计算的模N值,降低复杂度至O(KN),其中K为最终结果的位数。
摘要由CSDN通过智能技术生成

问题出自编程之美,感觉书上讲的比较晦涩,本人最喜欢通过例子来学习了

问题:给定一个正整数N,求一个最小的正整数M,使得N*M的十进制表示形式里只有1和0

这里分析N=13的情况

由于N*M比M有特征,所以从N*M入手

设ans=N*M

当ans有1位时,ans=1,ans%N=1

当ans有2位时,ans=10,11,ans%N=10,11

当ans有3位时,ans=100,101,110,111,ans%N=9,10,6,7

计算ans有4位的情况时

ans=1000

ans=1001=1000+1

ans=1010=1000+10

ans=1011=1000+11

ans=1100=1000+100

ans=1101=1000+101

ans=1110=1000+110

ans=1111=1000+111

以上的1,10,11,100,101,110,111模N的值均已经计算过

计算4位产出的模值就是用1000%N的值加上原本存在的所有模值,看是否产生新的模值

当我们计算完3位的情况后,将1,10,11,100,101,110,111模N的情况保存,这样计算4位的情况复杂度只有O(N)

计算完三位只需保存所有产生的模值即可

假设最后结果为K位

复杂度仅为O(KN)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值