索引优化:
为经常用于查询条件的列(如SKU ID、商品分类ID、价格范围等)添加索引。
考虑使用复合索引来优化包含多个查询条件的查询。
定期检查并优化索引,删除不常用的索引,避免索引碎片。
查询优化:
优化SQL查询语句,减少不必要的JOIN和子查询。
使用EXPLAIN等工具分析查询计划,了解查询的性能瓶颈。
避免在WHERE子句中使用函数,这会导致索引失效。
尽量使用参数化查询,防止SQL注入,并可能提高查询性能。
缓存策略:
使用应用级缓存(如Redis、Memcached)来缓存热点数据,减少数据库访问压力。
对于读多写少的场景,可以缓存查询结果,减少数据库的读取操作。
读写分离:
在高并发场景下,将数据库读操作和写操作分离到不同的数据库服务器或实例上,提高系统性能。
读写分离可以通过数据库中间件(如MyCat、ShardingSphere)来实现。
归档旧数据:
对于历史数据或不再频繁访问的数据,可以将其归档到单独的数据库或表中,减少主数据库的负担。
归档操作可以定期执行,例如每月或每季度一次。
数据库配置调整:
根据服务器的硬件资源和业务特点,调整数据库的配置参数,如缓存大小、连接池配置等。
使用合适的存储引擎,如InnoDB(支持事务处理、行级锁定和外键)。
数据规范化与反规范化:
规范化可以减少数据冗余,但可能会增加查询的复杂度。反规范化则通过增加数据冗余来提高查询性能。
根据实际情况选择适当的规范化级别,并在必要时进行反规范化。
使用数据库分区:
除了分表分库外,还可以使用数据库分区技术来优化性能。分区将表的数据分布到多个物理部分中,但逻辑上仍然表现为一个表。
分区可以基于范围(如日期范围)、列表(如商品分类)或哈希等方式进行。
定期维护:
定期对数据库进行维护,包括更新统计信息、重建索引、清理碎片等。
使用数据库管理工具来监控数据库的性能和健康状况,及时发现并解决问题。
考虑使用NoSQL数据库:
对于某些特定的应用场景(如高并发、大数据量、实时性要求高等),可以考虑使用NoSQL数据库(如MongoDB、Cassandra等)来替代或补充传统的关系型数据库。
硬件优化:
增加内存:更多的内存可以减少磁盘I/O操作,提高数据库查询和更新操作的速度。
使用更快的存储设备:如SSD(固态硬盘)相比传统的HDD(机械硬盘)可以提供更快的读写速度。
网络优化:确保数据库服务器和应用服务器之间的网络连接是稳定和高效的。