问题
给定 n 个整数组成的序列,现在要求将序列分割为 m 段,每段子序列中的数在原序列中连续排列。如何分割才能使这m段子序列的和的最大值达到最小?
动态规划
- 动态规划的解法:
- 阶段数为m.
状态转移方程:
f[i][j]=min max{ f[i][1]-f[k][1],f[k][j-1]}
其中1<=k< i;
j<= i <=n; 1<= j <= m;
初态:f[i][1]=f[i-1][1]+a[i]
最优值为f[n][m]。- 对于第j阶段中的每个 i, (j<=i <=n),考虑将1到i的序列分为j段子序列,且第j段序列从k开始到i,
由最优子结构性质,只需比较第j段序列和第j-1阶段的最优值即可。
决策变量:第j段序列分配i-k个元素.
code
public int maxAddM(int[] nums, int m) {
int[][] weights = new int[nums.length + 1][m + 1];
for (int i = 1; i <= nums.length; i++) {
weights[i][1] += weights[i - 1][1] + nums[i - 1];
}
for (int j = 2; j <= m; j++) {
for (int i = j; i <= nums.length; i++) {
int temp = Integer.MAX_VALUE;
for (int k = 1; k < i; k++) {
int max = Math.max(weights[i][1] - weights[k][1], weights[k][j - 1]);
temp = temp > max ? max : temp;
}
weights[i][j] = temp;
}
}
return weights[nums.length][m];
}