llama.cpp的一些perplexity结果

该文通过llama.cpp程序在NVIDIA L4 GPU上分析了不同量化方法对大语言模型性能的影响,特别是在wikitext-2测试集上的困惑度。结果显示,较小的困惑度表明模型对数据集的拟合更好,并且模型性能更依赖于参数数量而非量化精度。在有限的显存资源下,模型参数量对能否运行至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上结果:

模型\量化 q4_0 q4_1 q5_0 q5_1 q8_0 fp16
llama-7b 6.157 6.0915 5.9846 5.948 5.9063 5.68
llama-13b 5.385 5.3608 5.285 5.2702 5.2547 5.09
llama-30b 4.2707 - - - - 4.1000
alpaca-30b 4.4521 - - - - -
llama-2-7b 5.9675 6.0398 5.8328 5.8435 5.7897 -
llama-2-7b-chat 7.7641 7.7853 7.5055 7.5392 7.5014 -
llama-2-13b 5.2172 5.2115 5.1343 5.1289 5.1005 -
llama-2-13b-chat 6.6296 6.7059 6.5336 6.5771 6.5361
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值