NLP实践之——数据读取与分析

一、数据读取

import pandas as pd
train_df=pd.read_csv('D:/AIproject/NLP_news_paper_classific/data/train_set.csv/train_set.csv',sep='\t',nrows=100)

train_df.head()

在这里插入图片描述
二、数据分析
数据分析的目的:
(1)获得赛题数据中新闻文本的长度
(2)获得赛题数据类别分类的分布
(3)获得赛题数据字符的分布
1、句子长度分析
观察前5行数据可知每行句子中的字符用空格隔开,可通过统计单词个数来计算每个句子长度。

%pylab inline
train_df['text_len'] = train_df['text'].apply(lambda x: len(x.split(' ')))
print(train_df['text_len'].describe())

在这里插入图片描述
绘制句子长度直方图

plt.hist(train_df['text_len'], bins=200)
plt.xlabel('Text char count')
plt.title("Histogram of char count")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值