JDK1.6 API 中文版帮助文档的下载地址

java.lang 类 Math java.lang.Object java.lang.Math -------------------------------------------------------------------------------- public final class Mathextends ObjectMath 类包含用于执行基本数学运算的方法,如初等指数、对数、平方根和三角函数。 与 StrictMath 类的某些数学方法不同,并非 Math 类所有等价函数的实现都定义为返回逐位相同的结果。此类在不需要严格重复的地方可以得到更好的执行。 默认情况下,很多 Math 方法仅调用 StrictMath 中的等价方法来完成它们的实现。建议代码生成器使用特定于平台的本机库或者微处理器指令(可用时)来提供 Math 方法更高性能的实现。这种更高性能的实现仍然必须遵守 Math 的规范。 实现规范的质量涉及到两种属性,即返回结果的准确性和方法的单调性。浮点 Math 方法的准确性根据 ulp(units in the last place,最后一位的进退位)来衡量。对于给定的浮点格式,特定实数值的 ulp 是包括该数值的两个浮点值的差。当作为一个整体而不是针对具体参数讨论方法的准确性时,引入的 ulp 数用于任何参数最差情况下的误差。如果一个方法的误差总是小于 0.5 ulp,那么该方法始终返回最接近准确结果的浮点数;这种方法就是正确舍入。一个正确舍入的方法通常能得到最佳的浮点近似值;然而,对于许多浮点方法,进行正确舍入有些不切实际。相反,对于 Math 类,某些方法允许误差在 1 或 2 ulp 的范围内。非正式地,对于 1 ulp 的误差范围,当准确结果是可表示的数值时,应该按照计算结果返回准确结果;否则,返回包括准确结果的两个浮点值中的一个。对于值很大的准确结果,括号的一端可以是无穷大。除了个别参数的准确性之外,维护不同参数的方法之间的正确关系也很重要。因此,大多数误差大于 0.5 ulp 的方法都要求是半单调的:只要数学函数是非递减的,浮点近似值就是非递减的;同样,只要数学函数是非递增的,浮点近似值就是非递增的。并非所有准确性为 1 ulp 的近似值都能自动满足单调性要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值