深度学习(三) knn 训练数据集,测试数据集

本文以鸢尾花数据集为例,深入探讨了如何在深度学习中运用KNN(K-Nearest Neighbors)算法,涵盖了训练数据集与测试数据集的划分与操作。
摘要由CSDN通过智能技术生成

以鸢尾花为例:

将上面的写到一个函数中:

import numpy as np


def train_test_split(X,y,test_ratio=0.2,seed=None):
    """将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test"""
    assert X.shape[0] == y.shape[0], \
        "the size of X must be equal to the size of y"
    assert 0.0 <= test_ratio <= 1.0, \
        "test_ration must be valid"

    if seed
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值