蓝桥杯 算法提高 超级玛丽 (Java)

问题描述

大家都知道"超级玛丽"是一个很善于跳跃的探险家,他的拿手好戏是跳跃,但它一次只能向前跳一步或两步。有一次,他要经过一条长为n的羊肠小道,小道中有m个陷阱,这些陷阱都位于整数位置,分别是a1,a2,…am,陷入其中则必死无疑。显然,如果有两个挨着的陷阱,则玛丽是无论如何也跳过不去的。
  现在给出小道的长度n,陷阱的个数及位置。求出玛丽从位置1开始,有多少种跳跃方法能到达胜利的彼岸(到达位置n)。

输入格式

第一行为两个整数n,m
  第二行为m个整数,表示陷阱的位置

输出格式

一个整数。表示玛丽跳到n的方案数

样例输入

4 1
2

样例输出

1

数据规模和约定

40>=n>=3,m>=1
  n>m;

陷阱不会位于1及n上

这个题的关键字为 回溯 递推 递归 但是应该说的是用他们三个任意都可以作出来吧,我用的是递归,样例一测是正确的,然后就提交了,是100分

我就想着用递归,说是有长为n的路,有m个陷阱,第二行是陷阱的所在地,我们就用一个数组来放陷阱的位置,然后递归每次只能走一步或两步,这个就和上台阶的问题是相似问题,只不过多了一个陷阱,那我们可以,加个参数,来等于我们每次不管是走一步还是两步的位置,在和我们刚才放位置的数组来比较,如果一样那就悄悄的返回(return),最后结束位置就是我们这个位置走到n,就给ans++(我们定义的一个用来每次走到n来给她进行++)还有就是如果我们所在的位置已经大于了n,那说明这是不行的,然后也悄悄的返回;代码如下

package 算法提高;

import java.util.Scanner;

public class Test165 {
	static int n,m;
	static int[] a;
	static int ans=0;
public static void main(String[] args) {
	Scanner scanner = new Scanner(System.in);
	n = scanner.nextInt();
	m = scanner.nextInt();
	a = new int[m];
	for (int i = 0; i < m; i++) {
		a[i]=scanner.nextInt();
	}
	f(1,a,0);
	System.out.println(ans);
}
private static void f(int i, int[] a, int j) {
	if (j>n) {
		return;
	}
	if (j==n) {
		ans++;
		return ;
	}
	for (int j2 = 0; j2 < m; j2++) {
		if (j==a[j2]) {
			return ;
		}
	}
	f(i+2, a, j=i+2);
	f(i+1, a, j=i+1);
}

}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值