Question:
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
分析:
1、二维空间的任何一条线都可以表示成为y= k x + b 的形式。两点确定一条直线。固定其中一个点,遍历其余的点,斜率一致的即共线。
2、求斜率时只需遍历当前点与之后的点即可。
3、这里还要考虑斜率不存在的线。
4、还需要统计与当前固定点相同的点的个数。
5、内层遍历完毕即可求出过当前点的线的maxpoints.
6、外层循环遍历所有的点,即求出过所有点的maxpoints。maxpoints 中 的最大值即为所求。
code:
/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
#define INF 10000000
class Solution {
public:
int maxPoints(vector<Point> &points)
{
map<double,int> k_slope;//计算斜率相等的点的个数
double k;
int n;
int MAX = 0;
int rex_MAX = 0;
map<double,int>::const_iterator C_it;//= k_slope.begin();
for(int i = 0;i<points.size();i++)
{
n= 0;
k_slope.clear();
MAX = 0;
for(int j = i+1;j<points.size();j++)
{
if(points[i].x!=points[j].x)
{
k = (double)(points[i].y-points[j].y)/(points[i].x-points[j].x);
}
else if(points[i].y==points[j].y)
{
n++;//与i点相同的点
continue;
}
else//x相等,y不相等
{
k=INF;
}
k_slope[k]++;
}
C_it = k_slope.begin();
for(;C_it!= k_slope.end();C_it++)//取最大值
{
if(MAX<C_it->second)
MAX = C_it->second;
}
MAX += n+1;//加上重复的点n以及自身这个点。
if(rex_MAX<MAX)
rex_MAX = MAX;
}
return rex_MAX;//如果points为空返回0,否则即为max points。
}
};