机器学习
章鱼千
机器学习在电力系统中的应用
展开
-
数据降维之主成分分析法(PCA)——基本原理与基于python sklearn库的PCA实现
目录简介算法流程基于python sklearn库的PCA实现简介主成分分析(Principal Component Analysis,PCA)通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量称为主成分,最终得到的主成分两两正交。应用场景:对于线性的拟合、分类算法,可以利用主成分分析对输入数据实现降维,去除冗余数据可以提高计算效率并提高计算精度;对于难以...原创 2019-07-19 16:54:49 · 2378 阅读 · 1 评论 -
数据降维之线性判别分析(LDA)——基本原理与基于python sklearn库的LDA实现
目录简介算法流程基于python sklearn库的LDA例程简介线性判别分析(Linear Discriminate Analysis, LDA)通过正交变换将一组可能存在相关性的变量降维变量,目标是将高维数据投影至低维后,同类的数据之间距离尽可能近、不同类数据之间距离尽可能远。应用场景:对于拟合、分类算法,可以利用主成分分析对输入数据实现降维,去除冗余数据可以提高计算效率并提高计算精度...原创 2019-07-20 13:42:10 · 4094 阅读 · 0 评论 -
python-粒子群算法(PSO)的代码实现,附完整程序及例程
粒子群优化算法(Particle Swarm Optimization,PSO)属于进化算法的一种,通过迭代寻找最优解。PSO算法包含以下部分:价值函数y=f(x,a)y=f(x,a)y=f(x,a),其中aaa为模型参数,xxx为待求变量,我们希望求得令yyy最小的xxxNNN个粒子,每个粒子为一个矢量,其维数与待求变量一致每个粒子有两个属性,速度vvv和位置xxx粒子最优位置lbes...原创 2019-07-28 01:29:08 · 7390 阅读 · 2 评论 -
数据降维之主成分分析(PCA)与线性判别分析(LDA)对比
算法异同相同点:两者都是线性降维算法;两者均利用了矩阵特征值分解的思想;不同点:LDA为有监督的方法,要求原始数据包含类别标签PCA为无监督的方法;LDA降维有维数限制,必须降至数据类型数减一维及以下,PCA没有维数限制;LDA降维时以类间距离最大、类内距离最小为目标,PCA以所有样本间距离最大为目标;LDA本身可以用于分类,PCA不行;PCA方法下特征向量可以表示对应特征...原创 2019-09-30 01:04:24 · 1642 阅读 · 0 评论