
数据挖掘/机器学习
文章平均质量分 78
zhangzeyuaaa
这个作者很懒,什么都没留下…
展开
-
一般机器学习有哪些算法?
传统的机器学习算法主要依赖统计学和优化方法,不依赖深层神经网络,通常具有较高的可解释性且适用于中小规模数据集。通过最小化预测值与真实值的平方误差,拟合特征与目标之间的线性关系。:房价预测、销量趋势分析。和在线性回归基础上加入L2或L1正则化,防止过拟合。:高维数据回归(如基因数据分析)。基于支持向量机(SVM)的回归方法,通过间隔最大化优化预测边界。通过Sigmoid函数将线性回归结果映射到概率,用于二分类或多分类。:信用评分、疾病预测。寻找最大间隔超平面分割数据,支持核技巧处理非线性问题。原创 2025-03-14 22:54:31 · 850 阅读 · 0 评论 -
深度学习有哪些算法?
深度学习包含多种算法和模型,广泛应用于图像处理、自然语言处理、语音识别等领域。希望这份分类能帮助你系统了解深度学习算法!如需某个方向的详解,可进一步探讨。原创 2025-03-14 22:41:02 · 1801 阅读 · 0 评论 -
百度paddleocr GPU版部署
说明已成功安装,并且飞桨跟CUDA的版本也匹配上了。飞桨版本:2.6,操作系统:windows 10,安装方式:pip,计算平台:CUDA12.0(飞桨2.6最高支持CUDA12.0)由于飞桨2.6最高支持CUDA12.0,而Nvidia驱动程序能支持的最高cuda版本12.2,所以这里选择CUDA工具包12.0。一般我们是没有VS环境的,如果这个时候勾选上就很有可能导致安装失败,去掉之后我们下一步等待完成即可。由于网络原因,可能安装失败,多试几次就可以成功。安装完成后,就可以运行命令行识别图片文字了。原创 2024-03-15 11:06:36 · 2304 阅读 · 1 评论 -
OpenCV(python版)识别滑块验证中的缺口
前言验证码往往是爬虫路上的一只拦路虎,而其花样也是层出不穷:图片验证、滑块验证、交互式验证、行为验证等。随着OCR技术的成熟,图片验证已经渐渐淡出主流,而「滑块验证」越来越多地出现在大众视野。“这么厉害,这小子长啥样呢?”没错,它就长这损sai:解决它的方法也很直观,首先找到缺口的位置(通常只需要X轴的位置),然后拖动滑块即可。今天kimol君将带领大家用python识别出滑块验证中的缺口位置。一、缺口识别识别图片中的缺口,主要是利..转载 2021-08-08 10:55:05 · 11006 阅读 · 12 评论 -
大数据平台OLTP应用场景案例分析
大数据平台OLTP应用场景案例分析 前言Hadoop大数据平台在当今的IT业界是非常热门的话题, 如果你关注它们的应用场景,大多数情况是做OLAP智能分析以及数据挖掘。鲜有类似于传统关系型数据库擅长的OLTP事务处理场景。今天和大家分享一个在大数据平台上OLTP应用场景案例。 背景某国内车联网企业A,主要提供给各类大巴,货车公司安装各类转载 2017-03-24 23:13:07 · 4421 阅读 · 0 评论 -
交互式报表
什么是交互式报表传统报表是以一种相对静态的数据表现形式,辅助决策服务的。主要以显示、打印及导出数据功能为主。现代商业智能更需要智能的展现和分析数据,传统的报表并不能适应商业智能的需求。交互式报表是一种为实现智能化的业务分析的报表解决方案,使静态的报表尽可能动态化,即报表数据动态化和报表形式动态化,从而提升报表的实际使用价值。根据用户的分析角度和数据选择的不同而出现不同的报表转载 2017-06-30 23:56:56 · 1252 阅读 · 0 评论 -
自然语言处理
摘自百度百科自然语言自然语言通常是指一种自然地随文化演化的语言。英语、汉语、日语为自然语言的例子,而世界语则为人造语言,即是一种为某些特定目的而创造的语言。 不过,有时所有人类使用的语言(包括上述自然地随文化演化的语言,以及人造语言)都会被视为“自然”语言,以相对于如编程语言等为计算机而设的“人造”语言。这一种用法可见于自然语言处理一词中。自然语言是人类交流和思维的主要工具。 自然语言是人原创 2017-08-26 09:50:00 · 2585 阅读 · 0 评论 -
文本自动生成研究进展与趋势
摘要我们期待未来有一天计算机能够像人类一样会写作,能够撰写出高质量的自然语言文本。文 本自动生成就是实现这一目的的关键技术。按照不同的输入划分,文本自动生成可包括文本 到文本的生成、意义到文本的生成、数据到文本的生成以及图像到文本的生成等。上述每项 技术均极具挑战性,在自然语言处理与人工智能领域均有相当多的前沿研究,近几年业界也 产生了若干具有国际影响力的成果与应用。本文对上述前沿技术转载 2017-08-26 10:12:38 · 12144 阅读 · 2 评论