每日一题 LeetCode

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof

数组中的逆序对

题目描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:
输入: [7,5,6,4]
输出: 5

限制:0 <= 数组长度 <= 50000

题解

方法一:归并排序

在这里插入图片描述

思想是「分治算法」,所有的「逆序对」来源于 3 个部分:
左边区间的逆序对;
右边区间的逆序对;
横跨两个区间的逆序对。在这里插入图片描述
用这种「算贡献」的思想在合并的过程中计算逆序对的数量的时候,只在 lPtr 右移的时候计算,是基于这样的事实:当前 lPtr 指向的数字比 rPtr 小,但是比 RR 中 [0 … rPtr - 1] 的其他数字大,[0 … rPtr - 1] 的其他数字本应当排在 lPtr 对应数字的左边,但是它排在了右边,所以这里就贡献了 rPtr 个逆序对。

复杂度分析
记序列长度为 n。

  • 时间复杂度:同归并排序 O ( n log ⁡ n ) O(n \log n) O(nlogn)
  • 空间复杂度:同归并排序 O ( n ) O(n) O(n),因为归并排序需要用到一个临时数组。

方法二:离散化树状数组

在这里插入图片描述
在这里插入图片描述
复杂度分析
记序列长度为 n。

  • 时间复杂度:离散化的过程中使用了时间代价为 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的排序,单次二分的时间代价为 O ( log ⁡ n ) O(\log n) O(logn),一共有 n 次,总时间代价为 O ( n log ⁡ n ) O(n \log n) O(nlogn);循环执行 n 次,每次进行 O ( log ⁡ n ) O(\log n) O(logn)的修改和 O ( log ⁡ n ) O(\log n) O(logn) 的查找,总时间代价为 O ( n log ⁡ n ) O(n \log n) O(nlogn)。故渐进时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)
  • 空间复杂度:树状数组需要使用长度为 n 的数组作为辅助空间,故渐进空间复杂度为 O ( n ) O(n) O(n)

方法三:暴力求解

使用两层 for 循环枚举所有的数对,逐一判断是否构成逆序关系。

复杂度分析:

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),这里 n 是数组的长度;
  • 空间复杂度: O ( 1 ) O(1) O(1)

代码

归并

class Solution {
public:
    int reversePairs(vector<int>& nums) {
        int n = nums.size();
        //辅助数组
        vector<int> tmp(n);
        return mergeSort(nums, tmp, 0, n-1);
    }

    int mergeSort(vector<int>& nums, vector<int>& tmp, int left, int right){
        if(left >= right){
            return 0;
        }

        int mid = left + (right - left) / 2;
        int count = mergeSort(nums, tmp, left, mid) + mergeSort(nums, tmp, mid+1, right);
        int i = left;
        int j = mid+1;
        int pos = left;

        while(i <= mid && j <= right){
            if(nums[i] <= nums[j]){
                tmp[pos++] = nums[i++];
                count += (j - (mid + 1));
            }
            else{
                tmp[pos++] = nums[j++];
            }
        }
        for(int k = i; k <= mid; ++k){
            tmp[pos++] = nums[k];
            count += (j-(mid+1));
        }
        for(int k = j; k <= right; ++k){
            tmp[pos++] = nums[k];
        }
        copy(tmp.begin()+left, tmp.begin()+right+1, nums.begin()+left);
        return count;
    }  
};

树状数组

class BIT{
private:
    vector<int> tree;
    int n;

public:
    BIT(int _n): n(_n), tree(_n + 1 ){}

    //最低位,二进制数从右边起的第一个1的位置
    static int lowbit(int x){
        return x & (-x);
    }

    int query(int x){
        int ret = 0;
        while(x){
            ret += tree[x];
            x -= lowbit(x);
        }
        return ret;
    }

    void update(int x){
        while(x <= n){
            ++tree[x];
            x+= lowbit(x);
        }
    }
};

class Solution {
public:
    int reversePairs(vector<int>& nums) {
        int n = nums.size();
        vector<int> tmp = nums;
        //离散化
        sort(tmp.begin(), tmp.end());
        for(int& num:nums){
            num = lower_bound(tmp.begin(), tmp.end(), num) - tmp.begin() + 1;
        }
        // 树状数组统计逆序对
        BIT bit(n);//构造数组数组
        int ans = 0;
        for(int i = n-1; i >= 0; --i){
            ans += bit.query(nums[i] - 1);
            bit.update(nums[i]);
        }
        return ans;
    }
};

小结

归并排序(分治思想):阶段排序结果
树状数组或二叉索引树(Binary Indexed Tree, Fenwick Tree)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值