Task5

卷积神经网络

主要概念有卷积层,池化层,填充,步幅,输入通道,输出通道等。

卷积层进行的是二维的互相关运算而非卷积运算。我们将kernel数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程才是卷积运算。由于卷积层的kernel是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
特征图和感受野(receptive field)的概念。某一个特征图的点,其通过两次3×3和通过一次5×5,两者的感受野是一样的。

填充,步幅对形状的影响为:
n + 2 p − k s + 1 \frac {n + 2p - k}{s}+1 sn+2pk+1
p为单侧填充长度,即参数pad值。向下取整。
步长为1时,K:3×3, pad:1,不变;
K:5×5, pad:2,不变。

当有多个输入通道时,一般分通道计算并叠加。
当有多个通道输出时,通过多个核数组,提取不同层次的特征。

卷积层有利于提取局部信息。全连接层会把图片展平变为向量,相邻点不再相邻,难以捕捉局部信息。
卷积层参数更少,可以以较少的参数处理更大的图像。全连接层举例,一张彩色256*256图,输出为1000类,则权重+偏置光一层就有3×256×256×1000 + 1000个参数。
卷积层输出结果为四元张量 ( N , C , H , W ) (N, C, H, W) (N,C,H,W),即batchsize * channel * height * width。四维中第一维为批次,第二维为通道。

池化层不会按通道相加,故不会改变通道数。作用是缓解卷积层对位置的过度敏感性。窗口形状计算同卷积,同样的逻辑。

LeNet

长宽越来越小时,可以加宽通道来保留更多特征。

网络架构中,卷积层和隐藏全连接层可以带激活函数。
池化层和输出层不带激活函数。

卷积神经网络进阶

干净的数据,有效的特征,比模型选择更加重要。

特征有两个流派:
机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。比如,第一层识别边缘,第二层组合出花纹、轮廓,第三层发现物品,等等,直至输出层完成分类任务。
AlexNet首次证明了学习到的特征可以超越⼿⼯设计的特征。

LeNet在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

类似【11×11 Conv (96), stride 4, pad 2】的卷积层表示中,(96)表示输出通道。

LeNet使用sigmoid,AlexNet使用ReLU,导数计算更快,梯度下降时比sigmoid更快收敛。且y(x<0)=0也起到正则化,稀疏的作用。
AlexNet使用dropout来控制模型复杂度。全连接层参数过多(一层的一端就有4000)。

VGG:重复使用基础块(VGG block) 方便指导后续改进
NiN:用多通道的1×1卷积层来模拟全连接层
可以显著减少模型尺寸 缓解过拟合

我还不太会用gpu,要学习。用自己电脑跑,跑了20分钟了一个最基础的任务还没完。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值