在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
.
.#
4 4
…#
..#.
.#..
…
-1 -1
Sample Output
2
1
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n, k, ans;
char map[8][8];
int a[8];
void dfs(int i, int z) //累计可行的方案数,深度优先
{
int x, y;
if (z >= k)
{
ans++;
return;
}
for (x = i; x < n; x++)
{
for (y = 0; y < n; y++)
{
if (!a[y] && map[x][y] == '#')
{
a[y] = 1;//标记上
dfs(x + 1, z + 1);//递归
a[y] = 0;
}
}
}
return;
}
int main()
{
//输入
while ((scanf("%d%d", &n, &k)) && n != -1)
{
{
ans = 0;
memset(map, 0, sizeof(map));
memset(a, 0, sizeof(a));
}
for (int i = 0; i < n; i++)
{
scanf("%s", &map[i]);
}
dfs(0, 0);
printf("%d\n", ans);
}
return 0;
}