机器学习
文章平均质量分 69
机器学习算法
zzb103749
用大数据绘制未来的蓝图。
展开
-
机器学习之分类算法
1、KNN算法参考文献:理论来源:机器学习之KNN(k近邻)算法详解_平原的博客-CSDN博客_knn1-1 机器学习算法分类一、基本分类:①监督学习(Supervised learning)数据集中的每个样本有相应的“正确答案”, 根据这些样本做出 预测, 分有两类: 回归问题和分类问题。 步骤1: 数据集的创建和分类 步骤2: 训练 步骤3: 验证 步骤4: 使用 ( 1) 回归问题举例 例如: 预测房价, 根据样本集拟合出一条连续曲线。 ( 2) ...https://blog.csdn.原创 2021-12-02 17:30:32 · 745 阅读 · 0 评论 -
计算机学习网站
C语言中文网:C语言程序设计门户网站(入门教程、编程软件)http://c.biancheng.net/Python3 os.path() 模块 | 菜鸟教程Python3 os.path() 模块 Python3 OS 文件/目录方法 os.path 模块主要用于获取文件的属性。 以下是 os.path 模块的几种常用方法: 方法说明 os.path.abspath(path) 返回绝对路径 os.path.basename(path) 返回文件名 os.path.commonprefix(list) 返原创 2021-12-02 09:21:17 · 250 阅读 · 0 评论 -
机器学习算法模型
1、聚类算法常见的六大聚类算法_从未完美过的博客-CSDN博客_聚类算法2、过拟合、欠拟合欠拟合、过拟合及其解决方法_willduan的博客-CSDN博客_欠拟合3、正则化与交叉验证原创 2021-11-18 21:55:50 · 503 阅读 · 0 评论 -
python数据挖掘与分析
1、数据挖掘的基本任务数据挖掘就是借助机器学习、深度学习、大数据等技术,从数据中分析出所需的价值,主要涉及的任务有分类、预测、回归、关联分析、时间序列、聚类分析等。2、数据挖掘建模的流程目标定义:任务理解、指标确定 数据采集:建模抽样、质量把控、实时采集数据整理:数据探索、数据清洗、数据变化表 构建模型:算法选择、模型搭建、模型验证模型评价:模型评价指标选择、模型优化 模型发布:模型部署、模型运行监测3、数据挖掘采用工具语言:Python、anaconda工具:pandas、原创 2021-11-17 11:06:06 · 3858 阅读 · 0 评论 -
机器学习算法探索
2、算法图示3、算法的要点:3.1算法计算步骤4、算法的不足一、K近邻(KNN)1、K近邻算法概述K近邻算法属于分类算法,属于比较简单的算法,核心思想是“近朱者赤,近墨者黑”,根据临近样本计算自身的标签。2、算法图示从最近的K个样本的标签,依据少数服从多数的原则确定自身的标签; 三要素:训练数据集、距离度量(欧氏距离)、K值选择。算法运行流程描述:上图显示的是不同样本的展示,绿点是新样本,新样...原创 2021-11-17 11:10:13 · 276 阅读 · 0 评论