hadoop使用场景
- 大数据量存储:分布式存储
- 日志处理: Hadoop擅长这个
- 海量计算: 并行计算
- ETL:数据抽取到oracle、mysql、DB2、mongdb及主流数据库
- 使用HBase做数据分析: 用扩展性应对大量的写操作—Facebook构建了基于HBase的实时数据分析系统
- 机器学习: 比如Apache Mahout项目
- 搜索引擎:hadoop + lucene实现
- 数据挖掘:目前比较流行的广告推荐
- 大量地从文件中顺序读。HDFS对顺序读进行了优化,代价是对于随机的访问负载较高。
- 数据支持一次写入,多次读取。对于已经形成的数据的更新不支持。
- 数据不进行本地缓存(文件很大,且顺序读没有局部性)
- 任何一台服务器都有可能失效,需要通过大量的数据复制使得性能不会受到大的影响。
- 用户细分特征建模
- 个性化广告推荐
- 智能仪器推荐
hadoop是什么?
(1)Hadoop是一个开源的框架,可编写和运行分不是应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式。Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoop的数据来源可以是任何形式,在处理半结构化和非结构化数据上与关系型数据库相比有更好的性能,具有更灵活的处理能力,不管任何数据形式最终会转化为key/value,key/value是基本数据单元。用函数式变成Mapreduce代替SQL,SQL是查询语句,而Mapreduce则是使用脚本和代码,而对于适用于关系型数据库,习惯SQL的Hadoop有开源工具hive代替。(2) Hadoop就是一个分布式计算的解决方案.
hadoop能做什么?
hadoop擅长日志分析,facebook就用Hive来进行日志分析,2009年时facebook就有非编程人员的30%的人使用HiveQL进行数据分析;淘宝搜索中 的 自定义筛选也使用的Hive;利用Pig还可以做高级的数据处理,包括Twitter、LinkedIn 上用于发现您可能认识的人,可以实现类似Amazon.com的协同过滤的推荐效果。淘宝的商品推荐也是!在Yahoo!的40%的Hadoop作业是用pig运行的,包括垃圾邮件的识别和过滤,还有用户特征建模。(2012年8月25新更新,天猫的推荐系统是hive,少量尝试mahout!)
下面举例说明:
设想一下这样的应用场景. 我有一个100M 的数据库备份的sql 文件.我现在想在不导入到数据库的情况下直接用grep操作通过正则过滤出我想要的内容。例如:某个表中 含有相同关键字的记录 那么有几种方式,一种是直接用linux的命令 grep 还有一种就是通过编程来读取文件,然后对每行数据进行正则匹配得到结果 好了 现在是100M 的数据库备份.上述两种方法都可以轻松应对.
那么如果是1G , 1T 甚至 1PB 的数据呢 ,上面2种方法还能行得通吗? 答案是不能.毕竟单台服务器的性能总有其上限.那么对于这种 超大数据文件怎么得到我们想要的结果呢?
有种方法 就是分布式计算, 分布式计算的核心就在于 利用分布式算法 把运行在单台机器上的程序扩展到多台机器上并行运行.从而使数据处理能力成倍增加.但是这种分布式计算一般对编程人员要求很高,而且对服务器也有要求.导致了成本变得非常高.
Haddop 就是为了解决这个问题诞生的.Haddop 可以很轻易的把 很多linux的廉价pc 组成 分布式结点,然后编程人员也不需要知道分布式算法之类,只需要根据mapreduce的规则定义好接口方法,剩下的就交给Haddop. 它会自动把相关的计算分布到各个结点上去,然后得出结果.
例如上述的例子 : Hadoop 要做的事 首先把 1PB的数据文件导入到 HDFS中, 然后编程人员定义好 map和reduce, 也就是把文件的行定义为key,每行的内容定义为value , 然后进行正则匹配,匹配成功则把结果 通过reduce聚合起来返回.Hadoop 就会把这个程序分布到N 个结点去并行的操作.
那么原本可能需要计算好几天,在有了足够多的结点之后就可以把时间缩小到几小时之内.
这也就是所谓的 大数据 云计算了.如果还是不懂的话再举个简单的例子
比如 1亿个 1 相加 得出计算结果, 我们很轻易知道结果是 1亿.但是计算机不知道.那么单台计算机处理的方式做一个一亿次的循环每次结果+1
那么分布式的处理方式则变成 我用 1万台 计算机,每个计算机只需要计算 1万个 1 相加 然后再有一台计算机把 1万台计算机得到的结果再相加
从而得到最后的结果.
理论上讲, 计算速度就提高了 1万倍. 当然上面可能是一个不恰当的例子.但所谓分布式,大数据,云计算 大抵也就是这么回事了.
hadoop能为我司做什么?
零数据基础,零数据平台,一切起点都是0。
- 日志处理
- 用户细分特征建模
- 个性化广告推荐
- 智能仪器推荐
- 一切以增加企业的商业价值为核心目的、最终目的
怎么用hadoop
- hadoop的应用的在我司还属于研发型项目,拟用日志的分析来走通一次流程,因为此阶段目前来说还不需要数据挖掘的专业人员,在数据分析阶段即可,而系统有数据库工程师,Mapreduce有java开发工程师,而分析由我本人介入,而可视化暂时可由前端JS实现,本来我的调研方案,针对大数据的解决方案是hadoop+R的,但是对于R我们是完全不懂,在公司还没有大量投入人员的情况下,只有日志分析目前看来是最容易出成果的,也是可以通过较少人员能出一定成果的,所以选取了这个方向作为试点。
hadoop HDFS文件系统的特征
|
hadoop简介
Hadoop简介
Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等.
这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop:
1.什么是 Map/Reduce,看下面的各种解释:
(1) MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是 分布式文件系统 hdfs,一部是 分布式计算 框,就是mapreduce,缺一不可,也就是说,可以通过mapreduce很容易在hadoop平台上进行分布式的计算编程。
(2)Mapreduce是一种编程模型,是一种编程方法,抽象理论。
(3)下面是一个关于一个程序员是如何个妻子讲解什么是MapReduce?文章很长请耐心的看。
我问妻子:“你真的想要弄懂什么是MapReduce?” 她很坚定的回答说“是的”。 因此我问道:
我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)
妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。
妻子: 但这和MapReduce有什么关系?
我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.
妻子: 好吧。
我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?
妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。
我: 没错,让我们把MapReduce的概念应用到食谱上。Map和Reduce其实是两种操作,我来给你详细讲解下。
Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。 同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。 所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。
Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。
妻子: 所以,这就是MapReduce?
我: 你可以说是,也可以说不是。 其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。
妻子: 分布式计算? 那是什么?请给我解释下吧。
我: 没问题。
我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?
妻子: 我会找一个能为我大量提供原料的供应商。
我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎? 仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。
妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。
妻子:但是我怎么会制造出不同种类的番茄酱呢?
我:现在你会看到MapReduce遗漏的阶段—搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。 所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。
(4)上面都是从理论上来说明什么是MapReduce,那么咱们在MapReduce产生的过程和代码的角度来理解这个问题。
如果想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那收集好论文后,该怎么办呢?
方法一:我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。
这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。
方法二:写一个多线程程序,并发遍历论文。
这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。
方法三:把作业交给多个计算机去完成。
我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要把N个运行结果进行整合(当然我们也可以再写一个程序)。
方法四:让MapReduce来帮帮我们吧!
MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的。我们只要定义好这个任务(用户程序),其它都交给MapReduce。
map函数和reduce函数 map函数和reduce函数是交给用户实现的,这两个函数定义了任务本身。
map函数:接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。
reduce函数:接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。
统计词频的MapReduce函数的核心代码非常简短,主要就是实现这两个函数。
map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
在统计词频的例子里,map函数接受的键是文件名,值是文件的内容,map逐个遍历单词,每遇到一个单词w,就产生一个中间键值对<w, "1">,这表示单词w咱又找到了一个;MapReduce将键相同(都是单词w)的键值对传给reduce函数,这样reduce函数接受的键就是单词w,值是一串"1"(最基本的实现是这样,但可以优化),个数等于键为w的键值对的个数,然后将这些“1”累加就得到单词w的出现次数。最后这些单词的出现次数会被写到用户定义的位置,存储在底层的分布式存储系统(GFS或HDFS)。
工作原理
上图是论文里给出的流程图。一切都是从最上方的user program开始的,user program链接了MapReduce库,实现了最基本的Map函数和Reduce函数。图中执行的顺序都用数字标记了。
1.MapReduce库先把user program的输入文件划分为M份(M为用户定义),每一份通常有16MB到64MB,如图左方所示分成了split0~4;然后使用fork将用户进程拷贝到集群内其它机器上。
2.user program的副本中有一个称为master,其余称为worker,master是负责调度的,为空闲worker分配作业(Map作业或者Reduce作业),worker的数量也是可以由用户指定的。
3.被分配了Map作业的worker,开始读取对应分片的输入数据,Map作业数量是由M决定的,和split一一对应;Map作业从输入数据中抽取出键值对,每一个键值对都作为参数传递给map函数,map函数产生的中间键值对被缓存在内存中。
4.缓存的中间键值对会被定期写入本地磁盘,而且被分为R个区,R的大小是由用户定义的,将来每个区会对应一个Reduce作业;这些中间键值对的位置会被通报给master,master负责将信息转发给Reduce worker。
5.master通知分配了Reduce作业的worker它负责的分区在什么位置(肯定不止一个地方,每个Map作业产生的中间键值对都可能映射到所有R个不同分区),当Reduce worker把所有它负责的中间键值对都读过来后,先对它们进行排序,使得相同键的键值对聚集在一起。因为不同的键可能会映射到同一个分区也就是同一个Reduce作业(谁让分区少呢),所以排序是必须的。
6.reduce worker遍历排序后的中间键值对,对于每个唯一的键,都将键与关联的值传递给reduce函数,reduce函数产生的输出会添加到这个分区的输出文件中。
7.当所有的Map和Reduce作业都完成了,master唤醒正版的user program,MapReduce函数调用返回user program的代码。
所有执行完毕后,MapReduce输出放在了R个分区的输出文件中(分别对应一个Reduce作业)。用户通常并不需要合并这R个文件,而是将其作为输入交给另一个MapReduce程序处理。整个过程中,输入数据是来自底层分布式文件系统(GFS)的,中间数据是放在本地文件系统的,最终输出数据是写入底层分布式文件系统(GFS)的。而且我们要注意Map/Reduce作业和map/reduce函数的区别:Map作业处理一个输入数据的分片,可能需要调用多次map函数来处理每个输入键值对;Reduce作业处理一个分区的中间键值对,期间要对每个不同的键调用一次reduce函数,Reduce作业最终也对应一个输出文件。
总结:通过以上你是否了解什么是MapReduce了那,什么是key,怎么过滤有效数据,怎么得到自己想要的数据。
MapReduce是一种编程思想,可以使用java来实现,C++来实现。Map的作用是过滤一些原始数据,Reduce则是处理这些数据,得到我们想要的结果,比如你想 造出番茄辣椒酱。也就是我们使用hadoop,比方来进行日志处理之后,得到我们想要的关心的数据
Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等.
这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop:
1.什么是 Map/Reduce,看下面的各种解释:
(1) MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是 分布式文件系统 hdfs,一部是 分布式计算 框,就是mapreduce,缺一不可,也就是说,可以通过mapreduce很容易在hadoop平台上进行分布式的计算编程。
(2)Mapreduce是一种编程模型,是一种编程方法,抽象理论。
(3)下面是一个关于一个程序员是如何个妻子讲解什么是MapReduce?文章很长请耐心的看。
我问妻子:“你真的想要弄懂什么是MapReduce?” 她很坚定的回答说“是的”。 因此我问道:
我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)
妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。
妻子: 但这和MapReduce有什么关系?
我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.
妻子: 好吧。
我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?
妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。
我: 没错,让我们把MapReduce的概念应用到食谱上。Map和Reduce其实是两种操作,我来给你详细讲解下。
Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。 同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。 所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。
Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。
妻子: 所以,这就是MapReduce?
我: 你可以说是,也可以说不是。 其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。
妻子: 分布式计算? 那是什么?请给我解释下吧。
我: 没问题。
我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?
妻子: 我会找一个能为我大量提供原料的供应商。
我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎? 仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。
妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。
妻子:但是我怎么会制造出不同种类的番茄酱呢?
我:现在你会看到MapReduce遗漏的阶段—搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。 所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。
(4)上面都是从理论上来说明什么是MapReduce,那么咱们在MapReduce产生的过程和代码的角度来理解这个问题。
如果想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那收集好论文后,该怎么办呢?
方法一:我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。
这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。
方法二:写一个多线程程序,并发遍历论文。
这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。
方法三:把作业交给多个计算机去完成。
我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要把N个运行结果进行整合(当然我们也可以再写一个程序)。
方法四:让MapReduce来帮帮我们吧!
MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的。我们只要定义好这个任务(用户程序),其它都交给MapReduce。
map函数和reduce函数 map函数和reduce函数是交给用户实现的,这两个函数定义了任务本身。
map函数:接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。
reduce函数:接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。
统计词频的MapReduce函数的核心代码非常简短,主要就是实现这两个函数。
map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
在统计词频的例子里,map函数接受的键是文件名,值是文件的内容,map逐个遍历单词,每遇到一个单词w,就产生一个中间键值对<w, "1">,这表示单词w咱又找到了一个;MapReduce将键相同(都是单词w)的键值对传给reduce函数,这样reduce函数接受的键就是单词w,值是一串"1"(最基本的实现是这样,但可以优化),个数等于键为w的键值对的个数,然后将这些“1”累加就得到单词w的出现次数。最后这些单词的出现次数会被写到用户定义的位置,存储在底层的分布式存储系统(GFS或HDFS)。
工作原理
上图是论文里给出的流程图。一切都是从最上方的user program开始的,user program链接了MapReduce库,实现了最基本的Map函数和Reduce函数。图中执行的顺序都用数字标记了。
1.MapReduce库先把user program的输入文件划分为M份(M为用户定义),每一份通常有16MB到64MB,如图左方所示分成了split0~4;然后使用fork将用户进程拷贝到集群内其它机器上。
2.user program的副本中有一个称为master,其余称为worker,master是负责调度的,为空闲worker分配作业(Map作业或者Reduce作业),worker的数量也是可以由用户指定的。
3.被分配了Map作业的worker,开始读取对应分片的输入数据,Map作业数量是由M决定的,和split一一对应;Map作业从输入数据中抽取出键值对,每一个键值对都作为参数传递给map函数,map函数产生的中间键值对被缓存在内存中。
4.缓存的中间键值对会被定期写入本地磁盘,而且被分为R个区,R的大小是由用户定义的,将来每个区会对应一个Reduce作业;这些中间键值对的位置会被通报给master,master负责将信息转发给Reduce worker。
5.master通知分配了Reduce作业的worker它负责的分区在什么位置(肯定不止一个地方,每个Map作业产生的中间键值对都可能映射到所有R个不同分区),当Reduce worker把所有它负责的中间键值对都读过来后,先对它们进行排序,使得相同键的键值对聚集在一起。因为不同的键可能会映射到同一个分区也就是同一个Reduce作业(谁让分区少呢),所以排序是必须的。
6.reduce worker遍历排序后的中间键值对,对于每个唯一的键,都将键与关联的值传递给reduce函数,reduce函数产生的输出会添加到这个分区的输出文件中。
7.当所有的Map和Reduce作业都完成了,master唤醒正版的user program,MapReduce函数调用返回user program的代码。
所有执行完毕后,MapReduce输出放在了R个分区的输出文件中(分别对应一个Reduce作业)。用户通常并不需要合并这R个文件,而是将其作为输入交给另一个MapReduce程序处理。整个过程中,输入数据是来自底层分布式文件系统(GFS)的,中间数据是放在本地文件系统的,最终输出数据是写入底层分布式文件系统(GFS)的。而且我们要注意Map/Reduce作业和map/reduce函数的区别:Map作业处理一个输入数据的分片,可能需要调用多次map函数来处理每个输入键值对;Reduce作业处理一个分区的中间键值对,期间要对每个不同的键调用一次reduce函数,Reduce作业最终也对应一个输出文件。
总结:通过以上你是否了解什么是MapReduce了那,什么是key,怎么过滤有效数据,怎么得到自己想要的数据。
MapReduce是一种编程思想,可以使用java来实现,C++来实现。Map的作用是过滤一些原始数据,Reduce则是处理这些数据,得到我们想要的结果,比如你想 造出番茄辣椒酱。也就是我们使用hadoop,比方来进行日志处理之后,得到我们想要的关心的数据
Mapreduce 整个工作机制图
Mapreduce shuffle和排序
Mapreduce为了确保每个reducer的输入都按键排序。系统执行排序的过程-----将map的输出作为输入传给reducer 称为shuffle。学习shuffle是如何工作的有助于我们理解mapreduce工作机制。shuffle属于hadoop不断被优化和改进的代码库的一部分。从许多方面看,shuffle是mapreduce的“心脏”,是奇迹出现的地方。
从图可以看出shuffle发生在map端和reduce端之间,将map端的输出与reduce端的输入对应。
map 端
map函数开始产生输出时,并不是简单地将它输出到磁盘。这个过程更复杂,利用缓冲的方式写到内存,并出于效率的考虑进行预排序。shuffle原理图就看出来。
每个map任务都有一个环形内存缓冲区,用于存储任务的输出。默认情况是100MB,可以通过io.sort.mb属性调整。一旦缓冲内容达到阀值(io.sort.spill.percent,默认0.80,或者80%),一个后台线程开始把内容写到磁盘中。在写磁盘过程中,map输出继续被写到缓冲区,但如果在此期间缓冲区被填满,map会阻塞直到写磁盘过程完成。 在写磁盘之前,线程首先根据数据最终要传送到reducer把数据划分成相应的分区,在每个分区中,后台线程按键进行内排序,如果有一个combiner,它会在排序后的输出上运行。
reducer通过HTTP方式得到输出文件的分区。用于文件分区的工作线程的数量由任务的tracker.http.threads属性控制,此设置针对每个tasktracker,而不是针对每个map任务槽。默认值是40,在运行大型作业的大型集群上,此值可以根据需要调整。
reducer端
map端输出文件位于运行map任务的tasktracker的本地磁盘,现在,tasktracker需要为分区文件运行reduce任务。更进一步,reduce任务需要集群上若干个map任务完成,reduce任务就开始复制其输出。这就是 reduce任务的复制阶段 。reduce任务有少量复制线程,所以能并行取得map输出。默认值是5个线程,可以通过设置mapred.reduce.parallel.copies属性改变。
在这个过程中我们由于要提到一个问题,reducer如何知道要从那个tasktracker取得map输出呢?
map任务成功完成之后,它们通知其父tasktracker状态已更新,然后tasktracker通知jobtracker。这些通知都是通过心跳机制传输的。因此,对于指定作业,jobtracker知道map输出和tasktracker之间的映射关系。reduce中的一个线程定期询问jobtracker以便获得map输出的位置,直到它获得所有输出位置。
由于reducer可能失败,因此tasktracker并没有在第一个reducer检索到map输出时就立即从磁盘上删除它们。相反,tasktracker会等待,直到jobtracker告知它可以删除map输出,这是作业完成后执行的。
如果map输出相当小,则会被复制到reduce tasktracker的内存(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制),否则,map输出被复制到磁盘。一旦内存缓冲区达到阀值大小(由mapred.job.shuffle.merge.percent决定)或达到map输出阀值(mapred.inmem.merge.threshold控制),则合并后溢出写到磁盘中。
随着磁盘上副本的增多,后台线程会将它们合并为更大的、排好序的文件。这会为后面的合并节省一些时间。注意,为了合并,压缩的map输出都必须在内存中被解压缩。
复制完所有map输出被复制期间,reduce任务进入排序阶段(sort phase 更恰当的说法是合并阶段,因为排序是在map端进行的),这个阶段将合并map输出,维持其顺序排序。这是循环进行的。比如,如果有50个map输出,而合并因子是10 (10默认值设置,由io.sort.factor属性设置,与map的合并类似),合并将进行5趟。每趟将10个文件合并成一个文件,因此最后有5个中间文件。
在最后阶段,即reduce阶段,直接把数据输入reduce函数,从而省略了一次磁盘往返行程,并没有将5个文件合并成一个已排序的文件作为最后一趟。最后的合并既可来自内存和磁盘片段。
在reduce阶段,对已排序输出中的每个键都要调用reduce函数。此阶段的输出直接写到输出文件系统中。
从图可以看出shuffle发生在map端和reduce端之间,将map端的输出与reduce端的输入对应。
map 端
map函数开始产生输出时,并不是简单地将它输出到磁盘。这个过程更复杂,利用缓冲的方式写到内存,并出于效率的考虑进行预排序。shuffle原理图就看出来。
每个map任务都有一个环形内存缓冲区,用于存储任务的输出。默认情况是100MB,可以通过io.sort.mb属性调整。一旦缓冲内容达到阀值(io.sort.spill.percent,默认0.80,或者80%),一个后台线程开始把内容写到磁盘中。在写磁盘过程中,map输出继续被写到缓冲区,但如果在此期间缓冲区被填满,map会阻塞直到写磁盘过程完成。 在写磁盘之前,线程首先根据数据最终要传送到reducer把数据划分成相应的分区,在每个分区中,后台线程按键进行内排序,如果有一个combiner,它会在排序后的输出上运行。
reducer通过HTTP方式得到输出文件的分区。用于文件分区的工作线程的数量由任务的tracker.http.threads属性控制,此设置针对每个tasktracker,而不是针对每个map任务槽。默认值是40,在运行大型作业的大型集群上,此值可以根据需要调整。
reducer端
map端输出文件位于运行map任务的tasktracker的本地磁盘,现在,tasktracker需要为分区文件运行reduce任务。更进一步,reduce任务需要集群上若干个map任务完成,reduce任务就开始复制其输出。这就是 reduce任务的复制阶段 。reduce任务有少量复制线程,所以能并行取得map输出。默认值是5个线程,可以通过设置mapred.reduce.parallel.copies属性改变。
在这个过程中我们由于要提到一个问题,reducer如何知道要从那个tasktracker取得map输出呢?
map任务成功完成之后,它们通知其父tasktracker状态已更新,然后tasktracker通知jobtracker。这些通知都是通过心跳机制传输的。因此,对于指定作业,jobtracker知道map输出和tasktracker之间的映射关系。reduce中的一个线程定期询问jobtracker以便获得map输出的位置,直到它获得所有输出位置。
由于reducer可能失败,因此tasktracker并没有在第一个reducer检索到map输出时就立即从磁盘上删除它们。相反,tasktracker会等待,直到jobtracker告知它可以删除map输出,这是作业完成后执行的。
如果map输出相当小,则会被复制到reduce tasktracker的内存(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制),否则,map输出被复制到磁盘。一旦内存缓冲区达到阀值大小(由mapred.job.shuffle.merge.percent决定)或达到map输出阀值(mapred.inmem.merge.threshold控制),则合并后溢出写到磁盘中。
随着磁盘上副本的增多,后台线程会将它们合并为更大的、排好序的文件。这会为后面的合并节省一些时间。注意,为了合并,压缩的map输出都必须在内存中被解压缩。
复制完所有map输出被复制期间,reduce任务进入排序阶段(sort phase 更恰当的说法是合并阶段,因为排序是在map端进行的),这个阶段将合并map输出,维持其顺序排序。这是循环进行的。比如,如果有50个map输出,而合并因子是10 (10默认值设置,由io.sort.factor属性设置,与map的合并类似),合并将进行5趟。每趟将10个文件合并成一个文件,因此最后有5个中间文件。
在最后阶段,即reduce阶段,直接把数据输入reduce函数,从而省略了一次磁盘往返行程,并没有将5个文件合并成一个已排序的文件作为最后一趟。最后的合并既可来自内存和磁盘片段。
在reduce阶段,对已排序输出中的每个键都要调用reduce函数。此阶段的输出直接写到输出文件系统中。
Hadoop 各个发布版的特性以及稳定性
hadoop 三节点集群安装配置详细实例
http://www.aboutyun.com/forum.php?mod=viewthread&tid=6142&highlight=hadoop