分数阶FFT变换

本文详细介绍了分数阶傅立叶变换(FRFT),包括其定义、核函数和逆变换、性质,以及在LFM信号分析中的应用。FRFT作为一种广义的傅立叶变换,适用于非平稳信号的分析,其最佳阶次能揭示信号的主要特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅立叶变换是将观看角度从时域转变到频域,分数阶傅立叶变换就是以观看时频面的角度去旋转时频面的坐标轴,然后再从观察频域的角度去分析信息。

分数阶傅立叶变换多出来的一个算子就是这个旋转的角度。这个旋转角度以分数的形式呈现,取值是0-1,当取1时就等同于傅立叶变换。

将信息进行分数阶傅立叶变换的原因在于:大部分信息都是非平稳信号,仅仅用傅立叶变换不足以分析其显著特征,运用分数阶傅立叶变换主要是能选取信息最集中的角度去分析,也就是在不同的分数阶得到的结果中选取幅值最大的那个结果,那么这个结果所存在的那个分数阶就是最优阶次。


FRFT定义

一般地,信号 x ( t ) x(t) x(t),其 p p p阶分数阶 Fourier变换可表示为 F p x F^px Fpx X ϕ ( u ) X_\phi(u) Xϕ(u),前者可以解释为算子 F p F^p Fp作用于函数 x ( t ) x(t) x(t),后者可以解释为分数阶 Fourier 变换的结果在 u u u 域上, ϕ = p π / 2 \phi = p\pi/2 ϕ=pπ/2 为阶数 p p p 对应的旋转角度,即新变量 u − u- u轴相对于时间 t − t- t轴逆时针转过的角度。具体地,FRFT 定义为:
F p x = X ϕ ( u ) = ∫ − ∞ ∞ x ( t ) K ϕ ( t , u ) d t (1) F^px=X_\phi(u)=\int_{-\infty}^{\infty} x(t)K_\phi(t,u) dt \tag{1} Fpx=Xϕ(u)=x(t)Kϕ(t,u)dt(1)
其中 K ϕ ( t , u ) K_\phi(t,u) Kϕ(t,u) 为分数阶 Fourier 变换的核函数,定义如下:
K ϕ ( t , u ) = { A ϕ e x p ( j t 2 + u 2 2 c o t ϕ − j   u t   c s c ϕ ) , f o r ϕ ≠ n π δ ( t − u ) , f o r ϕ = 2 n π δ ( t + u ) , f o r ϕ = ( 2 n ± 1 ) π (2) K_\phi(t,u)=\begin{cases} A_\phi exp(j^{\frac{t^2+u^2}{2}}cot\phi-j\space ut\space csc\phi) ,for\phi\neq n\pi\\ \delta(t-u),for\phi=2n\pi\\\delta(t+u),for\phi=(2n\pm1)\pi \end{cases}\tag{2} Kϕ(t,u)=Aϕexp(j2t2+u2cotϕj ut cscϕ),forϕ=nπδ(tu),forϕ=2nπδ(t+u),forϕ=(2n±1)π(2)其中 A ϕ = 1 − j   c o t ϕ 2 π A_\phi=\sqrt{\frac{1-j\space cot\phi}{2\pi}} Aϕ=2π1j cotϕ 为幅度因子。


FRFT 的核函数和逆变换

分数阶 Fourier 变换的核函数具有如下性质:
K ϕ ( t , u ) = K ϕ ( u , t ) (3) K_\phi(t,u)=K_\phi(u,t)\tag{3} Kϕ(t,u)=Kϕ(u,t)(3) K − ϕ ( t , u ) = K

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值