发表文章之后,发现很多图片显示不了,请阅读我的公众号文章,以获得本文最佳体验:
无穷大的数都一样大吗?
通常来说,每当提到无穷大,我们都会认为是无穷无尽,不可数的。但具体是多大,我们确是没有概念的。
那么,对于无穷大的数:
- 有大小之分吗?
- 如果有,可以比较吗?
- 如果可以比较,比较无穷大数有意义吗?
我们知道,物理世界最小的单位可以描述为点,或者说用点来表示。一条直线由无数个点组成,一个面由无数条线组成,一个立体由无数个面组成。
那么问题来了,线、面、体上面的点数相同吗?如何比较?
"所有整数的个数和一条线上所有几何点的个数,究竟哪个大些?",这个问题有意义吗?著名数学家康托尔(Georg Cantor)首先思考了这个问题。
无穷大数可以比较吗
针对上面的一系列问题,我们必须得想办法对两个无穷大数进行比较。但是,对于无穷大数,我们是无法写出来的。因此,通过统计总数进行对比的方法显然是行不通的,因为我们根本无法对无穷大数进行计数。
那么,我们可不可以通过一一配对的方法来比较大小呢?针对有限的数量,通过一一配对的方法,尽管会花费很长时间,但却能够比较出大小。然而,如果用来比较无穷大数,一个个配对那可能永远也没有结束的时候。看来,这个原始而愚蠢的办法,也无法比较两个无穷大数。
慢着,虽然我们无法知道无穷大数的极限或总数,但是如果我们从任一无穷大数中抽取一个数,总能